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A B S T R A C T

Humans and non-human animals can approximate large visual quantities without counting. The approximate
number representations underlying this ability are noisy, with the amount of noise proportional to the quantity
being represented. Numerate humans also have access to a separate system for representing exact quantities
using number symbols and words; it is this second, exact system that supports most of formal mathematics.
Although numerical approximation abilities and symbolic number abilities are distinct in representational
format and in their phylogenetic and ontogenetic histories, they appear to be linked throughout development–
individuals who can more precisely discriminate quantities without counting are better at math. The origins of
this relationship are debated. On the one hand, symbolic number abilities may be directly linked to, perhaps
even rooted in, numerical approximation abilities. On the other hand, the relationship between the two systems
may simply reflect their independent relationships with visual abilities. To test this possibility, we asked whether
approximate number and symbolic math abilities are linked in congenitally blind individuals who have never
experienced visual sets or used visual strategies to learn math. Congenitally blind and blind-folded sighted
participants completed an auditory numerical approximation task, as well as a symbolic arithmetic task and non-
math control tasks. We found that the precision of approximate number representations was identical across
congenitally blind and sighted groups, suggesting that the development of the Approximate Number System
(ANS) does not depend on visual experience. Crucially, the relationship between numerical approximation and
symbolic math abilities is preserved in congenitally blind individuals. These data support the idea that the
Approximate Number System and symbolic number abilities are intrinsically linked, rather than indirectly linked
through visual abilities.

1. Introduction

Humans can think about number in two distinct ways. One way uses
number symbols (words or digits) to determine the precise numerosity
of sets. We can perform exact computations over these number symbols,
as when calculating the quotient of a long division problem, or a
number’s cubed root. This form of numerical thinking is uniquely
human and depends on language, emerging slowly over the course of
several years as children learn the meanings of number words, and
continuing to be modified through mathematical education (Carey,
2009; Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999; Pica, Lemer,
Izard, & Dehaene, 2004; Wynn, 1990). Another form of numerical
thinking relies on a non-verbal system that allows observers to re-
present quantities only approximately, such as when estimating the
rough number of apples on a tree or birds in a flock. Unlike the exact,
symbolic number system, the Approximate Number System (ANS) re-
presents quantity in an inherently imprecise format. As a result,

discrimination between approximate quantities is ratio-dependent and
obeys Weber’s law—quantities become more discriminable as their
ratio increases (Whalen, Gallistel, & Gelman, 1999). The Approximate
Number System does not require formal schooling or linguistic ex-
perience; newborn infants can match approximate numbers of images
to approximate numbers of sounds (Izard, Sann, Spelke, & Streri, 2009),
and numerical approximation abilities have been identified in various
non-human animals including monkeys, birds, rodents, and fish
(Agrillo, Dadda, Serena, & Bisazza, 2008; Viswanathan & Nieder, 2013;
for review see Brannon & Merritt, 2011).

Despite the differences between the systems for representing sym-
bolic and approximate number, symbolic number reasoning is thought
by many to be rooted in the ANS, such that approximate number re-
presentations play a role even during symbolic mathematical compu-
tation (e.g., Dehaene, Dupoux, & Mehler, 1990). Consistent with
this idea, individual differences in the ability to approximate the
number of items in an array without counting predicts performance on

https://doi.org/10.1016/j.cognition.2018.06.004
Received 20 April 2017; Received in revised form 1 June 2018; Accepted 5 June 2018

⁎ Corresponding author at: 3400 N Charles St., Baltimore, MD 21218, United States.
E-mail address: skanjli1@jhu.edu (S. Kanjlia).

Cognition 179 (2018) 111–120

Available online 20 June 2018
0010-0277/ © 2018 Published by Elsevier B.V.

T

http://www.sciencedirect.com/science/journal/00100277
https://www.elsevier.com/locate/cognit
https://doi.org/10.1016/j.cognition.2018.06.004
https://doi.org/10.1016/j.cognition.2018.06.004
mailto:skanjli1@jhu.edu
https://doi.org/10.1016/j.cognition.2018.06.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cognition.2018.06.004&domain=pdf


standardized math tests such as the SAT and the Woodcock-Johnson
(Bonny & Lourenco, 2013; Halberda, Mazzocco, & Feigenson, 2008;
Libertus, Feigenson, & Halberda, 2011; Libertus, Odic, & Halberda,
2012; Lourenco, Bonny, Fernandez, & Rao, 2012; Wang, Halberda, &
Feigenson, 2017; for review see Chen & Li, 2014; Feigenson, Libertus, &
Halberda, 2013). Furthermore, individual differences in 6-month-old
infants’ ability to visually discriminate approximate quantities predict
symbolic number knowledge at 3.5 years of age (Starr, Libertus, &
Brannon, 2013), and improving numerical approximation through
specific forms of practice can temporarily boost symbolic math per-
formance (Hyde, Khanum, & Spelke, 2014; Park & Brannon, 2013;
Wang, Odic, Halberda, & Feigenson, 2016).

However, the nature of the relationship between the exact and ap-
proximate number systems has been a matter of recent debate. One idea
is that the link between the ANS and exact symbolic number is specific
and reflects shared abstract number content (albeit in different re-
presentational formats). An alternative hypothesis is that the apparent
relationship between the two systems emerges because each of the
systems is independently linked with visual processing (Tibber et al.,
2013; Zhou, Wei, Zhang, Cui, & Chen, 2015). For example, individuals
who are better at math are also better at sustaining attention in an
object tracking task (Anobile, Stievano, & Burr, 2013), have better vi-
sual working memory (Bull, Espy, Wiebe, Sheffield, & Nelson, 2011; De
Smedt et al., 2009; Le Fevre et al., 2010), and are better at visuo-spatial
mental rotation (Reuhkala, 2001), visual movement perception
(Sigmundsson, Anholt, & Talcott, 2010), and basic visual perception
tasks including discriminating the orientation of lines, comparing ob-
jects’ shapes, and comparing visual area across arrays (Lourenco et al.,
2012; Tibber et al., 2013; Zhou et al., 2015). These findings suggest a
link between some aspects of visual perception and symbolic math
abilities.

Numerical approximation, too, is linked to various forms of visual
perception. People who are more precise at approximating numbers of
objects are sometimes reported to be better at estimating the cumula-
tive area of objects in an array (Lourenco et al., 2012; but see Odic,
Libertus, Feigenson, & Halberda, 2013). In addition, individuals per-
form better in numerical approximation tasks when the more numerous
array is greater in cumulative area or is visually denser, showing that
visual dimensions of a stimulus can affect numerosity perception (Fuhs
& McNeil, 2013; Gebuis & Reynvoet, 2012a, 2012b; Gilmore, Attridge,
& Inglis, 2011; Halberda & Feigenson, 2008; Rousselle, Palmers, & Noël,
2004; Soltész, Szucs, & Szucs, 2010). Moreover, some researchers have
suggested that visual numerical approximation is itself a form of visual
perception (Dakin, Tibber, Greenwood, Kingdom, & Morgan, 2011;
Morgan, Raphael, Tibber, & Dakin, 2014), pointing to findings that, like
other primary visual features including color and contrast, numerosity
is susceptible to adaptation. For example, exposure to a large quantity
of dots causes a subsequent quantity to be perceived as less numerous;
this suggests that numerosity is a visual feature that is extracted early in
processing (Burr & Ross, 2008; Ross & Burr, 2010).

Given these findings linking visual perception to both symbolic
math and numerical approximation, is there a meaningful relationship
between the Approximate Number System and math abilities?
Alternatively, is the relationship between these systems a byproduct of
individual differences in visual processing abilities that independently
predict both numerical approximation and math performance?
Evidence from congenitally blind individuals offers a unique opportu-
nity to answer this question. Unlike sighted individuals, congenitally
blind individuals have never experienced approximate numerical in-
formation through vision—therefore, vision could not “bootstrap” the
relationship between the ANS and symbolic number processing during
development.

Congenital blindness also offers a window into the role of vision in
the development of the ANS itself. For sighted humans, numerosity is a
salient visual feature of visual arrays that is processed automatically
(Burr & Ross, 2008; Cohen Kadosh, Bien, & Sack, 2012; Ross & Burr,

2010). Indeed, computational modeling shows that hierarchical gen-
erative models spontaneously construct representations of numerosity
following accumulated experience with simple visual sets (Stoianov &
Zorzi, 2012). The neural instantiation of numerical processing is also
consistent with the idea that vision, number, and spatial cognition are
intimately linked: neural representations of number are localized along
the dorsal visual stream in the intraparietal sulcus (Dehaene &
Changeux, 1993; Piazza & Eger, 2016; Piazza, Pinel, Le Bihan, &
Dehaene, 2007; Roggeman, Santens, Fias, & Verguts, 2011; Uddin et al.,
2010), raising the possibility that vision plays a foundational role in the
initial development of the ANS.

Furthermore, in some respects, numerical sets are experienced dif-
ferently through vision compared to audition and touch. Whereas vision
permits hundreds of items to be estimated simultaneously within just
seconds, humans are limited in the number of tactile and auditory items
they can simultaneously individuate in space (Anobile, Cicchini, & Burr,
2014; Dakin et al., 2011). For example, participants can neither accu-
rately enumerate more than 5 simultaneous tactile stimuli on the body
nor have been shown to individuate more than 4 simultaneous sounds
(Ferrand, Riggs, & Castronovo, 2010; McAdams, 1989; Micheyl &
Oxenham, 2010) (although large numbers of tactile and auditory sti-
muli can be perceived sequentially).

As such, the absence of visual experience with quantities could
modify the ANS. Even if vision is not strictly necessary for the formation
of an ANS, it could be necessary for optimal ANS tuning. In sighted
populations, ANS precision increases markedly over development. For
example, whereas sighted infants require a 1:2 or 2:3 ratio between
arrays in order to successfully discriminate numerosities (Izard et al.,
2009; Lipton & Spelke, 2003; Xu & Spelke, 2000), children and adults
can discriminate much finer ratios (Halberda & Feigenson, 2008;
Halberda, Ly, Wilmer, Naiman, & Germine, 2012). Improvement is
observed even before educational experience and before the emergence
of linguistic competence (Halberda & Feigenson, 2008; Libertus &
Brannon, 2009, 2010; Lipton & Spelke, 2003; Odic et al., 2013). These
developmental increases in ANS precision might be partly driven by
visual experience. If so, we would expect blind individuals to perform
worse than sighted individuals on numerical estimation tasks.

Alternatively, given that auditory and tactile estimation primarily
occur sequentially, whereas visual estimation often occurs simulta-
neously, blind individuals might substantially outperform sighted in-
dividuals on sequential ANS tasks with which they are putatively more
practiced. Blind individuals have previously been shown to outperform
sighted individuals on some auditory perception tasks (e.g., peripheral
sound localization) (Fieger, Röder, Teder-Sälejärvi, Hillyard, & Neville,
2006; Lessard, Paré, Lepore, & Lassonde, 1998; Röder et al., 1999). A
parallel finding could be obtained for auditory numerical approxima-
tion if the ANS is not, in fact, a unitary cognitive system, but rather
comprised of multiple modality-specific or format-specific (i.e., se-
quential vs. simultaneous) systems. In fact, there is some evidence that
sequential and parallel ANS processing depend on partially non-over-
lapping neural substrates (Dormal, Andres, Dormal, & Pesenti, 2010;
Nieder, Diester, & Tudusciuc, 2006). If sequential and simultaneous
ANS systems are independent, we might expect blind individuals to
exhibit specific improvements in sequential auditory number estima-
tion.

A final possibility is that the ANS is a modality independent, ab-
stract system that does not require input from any one particular
modality for proper function. If so, we would expect blind and sighted
individuals to perform similarly on sequential auditory ANS tasks.

Two previous studies have compared numerical approximation
across blind and sighted participants (Castronovo & Delvenne, 2013;
Castronovo & Seron, 2007). Contrary to the proposal that vision is re-
quired for ANS development, these studies found that blind individuals
actually outperformed the sighted on sequential estimation tasks that
involved producing a particular number of actions without counting
(e.g., footsteps, key presses) or estimating the number of tones played in
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a sequence (Castronovo & Delvenne, 2013; Castronovo & Seron, 2007).
One possible concern with these findings, however, is that participants
in these studies may not have relied exclusively on the ANS to perform
the task. Although participants were instructed not to count, their near-
perfect accuracy with very large target quantities suggests that they
likely engaged resources beyond the ANS. For instance, blind in-
dividuals potentially were better able to rapidly verbally count numbers
of items in these tasks relative to sighted individuals. Indeed, blind
individuals outperform sighted on some verbal tasks (e.g., verbal
working memory), suggesting the possibility that their performance
may not reflect ANS precision but rather effective alternative strategies
(Amedi, Raz, Pianka, Malach, & Zohary, 2003; Raz, Striem, Pundak,
Orlov, & Zohary, 2007).

The current study therefore had two aims. The first was to ask
whether congenitally blind participants show similar ANS precision to
sighted participants when counting is rigorously prevented. The second
aim was to ask whether individual differences in ANS precision corre-
late with math performance among blind individuals who have never
experienced number visually. To this end, a group of congenitally blind
participants and a group of sighted participants completed an auditory
numerical approximation task and a timed symbolic math task using
spoken numerals. In the ANS task, participants judged which of two
tone-sequences was more numerous. In the symbolic math task, parti-
cipants completed as many subtraction problems as they could in four
minutes and as many division problems as they could in another four
minutes. We then correlated ANS performance and symbolic math
performance across participants.

To determine the specificity of any observed relationship between
ANS precision and symbolic math performance, we also tested partici-
pants on a series of control tasks. We administered a standardized test
of math concepts that tests participants’ knowledge of math facts.
Previous work suggests that ANS precision does not relate to rote
memory for mathematical information (for review see Chen & Li,
2014). We therefore predicted that knowledge of math facts would not
correlate with ANS precision (Dehaene, Piazza, Pinel, & Cohen, 2003).
We also tested participants’ working memory, reading, and verbal
knowledge; this allowed us to partial out the effect of these skills from
the relationship between ANS precision and symbolic math perfor-
mance.

2. Participants

Twenty-four congenitally blind and fifteen sighted participants
contributed data. Sighted and blind groups were matched on average
age and education (see Table 1). All blind participants had, at most,
minimal light perception and reported never having seen shapes, color
or motion. One additional blind participant was excluded after testing
because further screening revealed non-congenital blindness. Three
additional participants were tested but excluded from the final sample
due to performance on the ANS task. One sighted participant was ex-
cluded because their performance on the ANS task was two standard
deviations away from the sighted mean and was unusually poor relative
to published samples of ANS performance in sighted participants
(Halberda et al., 2012). Two blind participants were excluded because
their ANS performance was poorly fit by the psychophysical model
(R2≤ 0; two blind participants).

Working memory data from one blind participant were not included
because the participant confused the sounds of letter stimuli in the
letter span task. One blind participant did not complete the analogies
subtest of the oral vocabulary task. This participant’s vocabulary score
consisted of the mean of their synonym and antonym scores.

3. Methods

3.1. Auditory approximate number discrimination task

Blind and blind-folded sighted participants heard pairs of auditory
tone sequences over headphones and indicated which sequence was
more numerous by pressing one of two buttons on a response pad
(blind) or computer keyboard (sighted controls). The second test se-
quence was smaller than the first on half of the trials (small test) and
larger on the other half (large test). The number of tones in the first and
second sequence differed by one of 5 ratios: 1.08, 1.15, 1.2, 1.44 or 2
(e.g., 20 vs. 40 is a ratio of 2, where ratio is the larger numerosity
divided by smaller numerosity). Each of the 5 ratios was presented 16
times over the course of the experiment and was instantiated as 8 un-
ique numerosity pairs, each of which occurred twice (all pairs shown in
Table 2).

To prevent participants from relying on duration to make their re-
sponses, we controlled the total duration of sound presented within a
given pair of tone sequences (i.e., the sums of individual tone dura-
tions). This is analogous to visual experiments that control the total
area of presented dots. On half the trials the total duration of sound was
congruent with respect to the ratio between the two numerosities (i.e.,
the more numerous sequence was longer) and on half the trials it was
incongruent (i.e., the more numerous sequence was shorter). Thus re-
lying on total sound duration to judge number would systematically
yield the incorrect answer on half the trials.

Frequency was also not a reliable cue to numerosity, as inter-tone
interval was randomly selected from geometric distribution (mean

Table 1
Participant demographic information.

Participant Age Education Cause of vision loss

CB_01 23 Some College LCA
CB_02 48 JD LCA
CB_03 44 BA ONH
CB_04 34 BA ONH
CB_05 33 Some College ROP
CB_06 29 MA ROP
CB_07 43 Some College ONH
CB_08 26 Some College LON
CB_09 57 MA CG
CB_10 26 BA LCA
CB_11 30 Middle School Unknown
CB_12 28 BA AN
CB_13 43 High School RB
CB_14 29 Some College ONH
CB_15 32 BA PCA
CB_16 39 BA AN
CB_17 44 MA SOD
CB_18 27 Some College Aniridia
CB_19 42 BA LCA
CB_20 27 PhD MO
CB_21 44 JD Unknown
CB_22 33 BA ROP
CB_23 40 PhD ROP
CB_24 25 MA LCA

Group average Age Years of education

Congenitally Blind 35 16.94 –
Sighted 37 17.60 –

AN=Anopthalmia; CG=Congenital Glaucoma; LCA=Liebers Congenital
Amaurosis; MO=micro-opthalmia; ONH=Optic Nerve Hypoplasia;
RB=Retinal Blastoma; ROP=Retinopathy of Prematurity; SOD= Septo-optic
Dysphasia; BA=Bachelor of Arts; JD= Juris Doctor; MA=Master of Arts;
PhD=Doctor of Philosophy.
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ISI= 158.83ms, min= 100ms, max=806ms). Thus, participants
could not use frequency (ISI) as a reliable cue to numerosity because
they were not correlated. Note that controlling for total sound duration
and ISI duration precluded us from also controlling for total sequence
duration (i.e., total sound duration+ total ISI duration). However,
subsequent analyses showed that participants were reliably above
chance at judging numerosity, even when numerosity was incongruent
with total sequence duration (see Results).

While the average duration of tones and ISIs was controlled, the
durations of individual tones and ISIs were jittered to preclude parti-
cipants from counting. Both individual tone duration and the interval
between tones varied randomly within and across trials. This procedure
has been shown to effectively preclude participants from counting (see
Cordes, Gallistel, Gelman, & Latham, 2007).

To further prevent counting, on each trial, participants verbally
repeated a different two-letter sequence (e.g., “D-F”) during the pre-
sentation of the stimulus sequences. Previous work has found that si-
milar verbal loads were successful in preventing participants from
counting (Cordes, Gelman, Gallistel, & Whalen, 2001).

To ensure that the two tone sequences were separately perceived,
the first tone sequence always consisted of 400 Hz tones to the left ear
and the second sequence always consisted of 500 Hz to the right ear.
Each individual tone ramped up in volume, reached a plateau and then
ramped down. Immediately after their response on every trial, partici-
pants heard auditory feedback to indicate whether their response was
correct (“ding” sound) or incorrect (buzzer sound).

Participants pressed the space bar on a keyboard to begin each trial.
Each trial began with a unique pair of spoken letters for participants to
begin repeating (0.87–1.55 sec), followed by the first tone sequence
(see above), a delay interval (2 sec), the second tone sequence (see
above), a response period (3 sec), and a feedback tone (0.41–0.5 sec).
Participants then waited the remainder of the 3-second response period
before starting the next trial.

Trials on which a participant’s response time was more than two
standard deviations away from their own mean (across all ratios) were
dropped from all analyses (blind: M=3.46 trials dropped, SD=1.47;
sighted: M=4 trials dropped; SD=2).

3.2. Psychophysical modeling of performance on auditory ANS task

We assessed individual differences in the precision of participants’
approximate number representations in terms of Weber fractions. The

Weber fraction (w) is a number greater than 0 that indexes the amount
of noise in ANS representations for a given individual. Each partici-
pant’s Weber fraction was determined using a least squares method to
fit their accuracy (percent correct across trials) for each ratio with a
curve generated by the model shown below (Halberda et al., 2008;
Libertus et al., 2012; Odic et al., 2013; Pica et al., 2004).
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The model assumes that for a given trial, the numerosity of each of
two stimulus arrays is represented by a Gaussian distribution (with
means n1 and n2), and that comparing the two quantities involves a
Gaussian subtraction of these two distributions in order to determine
the magnitude of their difference. The probability of responding cor-
rectly following this subtraction is predicted by the complementary
error function.

The Weber fraction, w, is the only free parameter in this model. The
Weber fraction quantifies the variance in the Gaussian representation of
each numerosity (the standard deviation for a distribution representing
the numerosity n will be w * n). Thus, a larger Weber fraction corre-
sponds to larger variance in the numerical representation. Larger Weber
fractions are worse because wider distributions exhibit more overlap,
which makes numerosities less discriminable.

Goodness of fit of the Weber function was determined using the
following formula: 1.0-(SSRegression/SSMean), where SSRegression is sum of
squared distances between each data point and its predicted value
based on the psychophysical model, and SSMean is the sum of squared
distances between each data point and the mean of the data points. This
formula produces a positive value (with 1 indicating a perfect fit) if the
Weber function predicted a participant’s accuracy better than a hor-
izontal line through their mean accuracies. Negative values indicate
that that the Weber function fit the participant’s data worse than a
horizontal line through the participant’s mean accuracies.

3.3. Auditory symbolic math task

Previous research suggests that ANS precision is linked with only a
subset of symbolic math abilities, suggesting that the link between the
ANS and math reflects reliance of particular mathematical computa-
tions on magnitude representations, rather than reflecting the con-
tribution of meta-cognitive or emotional factors, such as self confidence
in math, or math anxiety. We tested participants on timed subtraction
and division tasks and examined the correlation between ANS precision
and performance on these two arithmetic operations separately. We
chose to test participants on subtraction and division because they re-
quire active quantity manipulation more than addition and multi-
plication, which can often be solved by rote memorization (Dehaene &
Cohen, 1997; Dehaene et al., 2003; Lee & Kang, 2002). Subtraction
performance (tested independently and intermixed with addition pro-
blems) has been shown to correlate with ANS precision (Price, Palmer,
Battista, & Ansari, 2012; Wei et al., 2012). Subtraction also activates
the IPS more than multiplication (Chochon, Cohen, van de Moortele, &
Dehaene, 1999; Lee, 2000). However, to our knowledge, division has
not previously been shown to correlate with ANS precision (Chen & Li,
2014; Gebuis & van der Smagt, 2011; Lindskog, Winman, Juslin, &
Poom, 2013).

Participants mentally solved as many subtraction or division pro-
blems as possible within two four-minute blocks. Participants heard the
math problems over headphones, spoke their answers aloud, and
pressed a button to advance to the next problem. Participants could use
as much time as they needed for any problem (within the allotted four
minutes), and could skip problems but could not return to skipped
problems. There were 29 subtraction problems and 32 division pro-
blems, taken from the Kit of Factor-Referenced Cognitive Test (Ekstrom,
French, Harman, & Dermen, 1976). Minuends in the subtraction task

Table 2
Numerosity pairs in the auditory approximate number discrimination task.

Ratio Sample Small test Large test

1.08 14 13 15
16 15 17
18 17 18
20 19 22

1.15 14 12 16
16 14 18
18 16 20
20 18 23

1.2 14 11 17
16 13 19
18 15 22
20 17 24

1.44 14 9 20
16 11 23
18 13 26
20 14 29

2 14 7 28
16 8 32
18 9 36
20 10 40
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ranged from 18 to 98, subtrahends ranged from 11 to 65, and answers
ranged from 4 to 70. Divisors in the division task ranged from 2 to 9,
dividends ranged from 42 to 792, and answers ranged from 7 to 99.
Participants did not receive any feedback on this task.

3.4. Working memory task

Forward and backward letter-span tasks were adapted from the
Third Edition of the Wechsler Adult Intelligence Scale (WAIS-III) digit-
span task. Digits 1–9 were assigned letters A-I. Participants heard
strings of letters over headphones. In the forward span task, they re-
peated the letters back in the same order as they were presented, and in
the backward span task they repeated the letters in the reverse order in
which they were presented. Letter strings began with 2 letters and in-
creased by one letter every two trials, with a maximum of 10 letters for
the forward span and 8 letters for the backward span task. The task
stopped when participants recited two letter strings of the same length
incorrectly or when participants reached the maximum number of trials
(max 16 and 14 trials for forward and backward letter span, respec-
tively). Letters within a string were separated by a one second delay. All
participants completed the forward and then the backward span task.
Participants’ forward and backward letter span scores were averaged to
obtain a working memory score for each participant.

3.5. Woodcock-Johnson III quantitative concepts, reading, and vocabulary
knowledge tasks

Portions of the Third Edition of the Woodcock Johnson III
Standardized Test (WJ-III) were administered to blind participants in
Grade II Braille (using the WJ-III Braille Adaptation) and to sighted
participants in visual print (Jaffe, 2009; Jaffe, Henderson, Evans,
McClurg, & Etter, 2009).

To measure participants’ general math knowledge (e.g., how many
square feet are in a square yard), we administered the last 26 questions
of the WJ-III Quantitative Concepts test. The experimenter asked the
participants questions verbally and participants answered verbally.
Some questions required tactile (for blind) or visual (for sighted) gra-
phics.

To measure participants’ reading ability, we administered the WJ-III
Letter/Word Identification and Word Attack tests in Braille for blind
participants and in print for sighted participants. On the Letter/Word
Identification test, participants read 60 words aloud (e.g., “scientist”;
“bounties”) and on the Word-Attack test, participants read 33 non-
words aloud (e.g., “lindify”; “knoink”). Scores from these two reading
sections were averaged to obtain a reading score for each participant.

To measure participants’ vocabulary knowledge, we administered
the WJ-III Oral Vocabulary test which consisted of Synonym, Antonym
and Analogies subtests. On the Synonym and Antonym tests, partici-
pants verbally provided synonyms and antonyms for 24 different words
(12 synonyms, 12 antonyms; e.g., provide synonyms for “assist” and
“obvious”; provide antonyms for “attract” and “demure”). On the
analogies test, participants completed 12 analogies (e.g., run is to fast as

walk is to ___). Scores across the three subtests were averaged to obtain
one vocabulary score per participant.

Items in each section of the WJ-III were presented in increasing
difficulty. On all subtests, participants were allowed to take as much
time as needed and did not receive any feedback. Each section was
scored by dividing the number of items participants completed cor-
rectly by the total number of items tested from that section.

4. Results

4.1. Precision on auditory approximate number task

We first asked whether there was a difference between the numer-
ical approximation abilities of the congenitally blind versus sighted
participants. In overall accuracy, congenitally blind and sighted parti-
cipants performed similarly: the blind participants averaged 75.41%
correct (SD=6.76%) and the sighted participants averaged 79.08%
correct (SD=4.80%; unpaired t-test: t(37)=−1.83, p=0.08). Even
on trials on which numerosity was incongruent with total sequence
duration, both blind and sighted participants successfully identified the
more numerous sequence (blind accuracy= 63.99%, SD=17.85;
sighted accuracy=62.32%, SD=11.55). Furthermore, performance
was ratio-dependent on these total duration incongruent trials (blind
w=0.33, R2= 0.83; sighted w=0.52, R2= 0.80).

Both blind and sighted participants’ data was well fit by the psy-
chophysical model. On average, the model accounted for 71.19%
(SD=18.15, Min=37.35, Max=95.45) of the variation in the accu-
racy across ratios of blind participants, and 66.37% (SD=24.79,
Min= 11.63, Max=96.61) of the variation in the accuracy across
ratios of the sighted participants (unpaired t-test: t(37)= 0.7,
p=0.49).

The Weber fractions, or w’s, of the blind participants averaged 0.25
(SD=0.08) and of the sighted participants averaged 0.20 (SD=0.07;
unpaired t-test: t(37)= 1.81, p=0.08) (Figs. 1 and 2). Note that the
marginal difference in ANS performance between blind and sighted
groups disappeared when ROP participants were excluded from ana-
lysis (see below).

4.2. Relationship of ANS and symbolic math performance

Our next question concerned symbolic math performance and its
link with ANS precision. We found similar performance across blind
and sighted participants on the symbolic subtraction and division tasks.
On the subtraction task, blind participants correctly answered 67.39%
(SD=25.96) of problems and sighted participants correctly answered
59.77% (SD=24.72) of problems (unpaired t-test: t(37)= 0.91,
p=0.37; Table 3). On the division task, blind participants correctly
answered 30.21% (SD=15.63) of problems and sighted participants
correctly answered 33.33% (SD=15.96) of problems (unpaired t-test: t
(37)=−0.60, p= 0.55; Table 3).

A key question was whether ANS precision on a numerosity dis-
crimination task is linked to symbolic math ability in both sighted
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participants (as has been observed in many previous studies) and con-
genitally blind participants. We found that ANS precision (Weber fac-
tion, w) was negatively correlated with subtraction performance in both
the sighted group (R2= 0.29, p= 0.04) and the blind group
(R2=0.28, p < 0.01; Fig. 2). This correlation did not differ across
groups (Fisher z transform test for difference among independent
sample correlation coefficients, z= 0.06, p=0.95; Fisher, 1921). The
correlation between ANS precision and division performance was
marginally significant in the blind group (R2=0.16, p= 0.051) but
was not present in the sighted group (R2=0.14, p= 0.18) (Fig. 2).

To characterize the specificity of the relationship between ANS
precision and symbolic math performance, we examined the correlation
between ANS precision and performance on the non-math WJ-III tests.
Blind and sighted participants performed similarly on control WJ-III
subtests, as summarized in Table 3. We found that ANS precision was
not significantly correlated with the ability to read words and non-
words (mean of WJ-III letter/word identification and word attack
scores; blind: R2= 0.09, p=0.16; sighted: R2= 0.05, p=0.41). ANS
performance and vocabulary knowledge were marginally correlated in
the blind group (mean of WJ-III synonym, antonym and analogy scores;
R2= 0.14, p=0.07) but were not correlated in the sighted group
(R2=0.07, p=0.34). Similarly, ANS precision was correlated with
knowledge of math concepts in the blind group (R2=0.17, p=0.05)
but not in the sighted group (R2= 0.14, p=0.17).

Finally, we asked whether the relationship between ANS precision

and math performance was mediated by general working memory
abilities. Consistent with previous studies, blind participants performed
significantly better then sighted participants on the working memory
task (blind: 63.99%, SD=15.50; sighted: 48.66%, SD=8.17; unpaired
t-test: t(36)= 3.51, p=0.001) (Amedi et al., 2003; Crollen, Mahe,
Collignon, & Seron, 2011; Dormal, Crollen, Baumans, Lepore, &
Collignon, 2016; Occelli, Lacey, Stephens, Sathian, &, Rehabilitation,
2016; Raz et al., 2007). Working memory was correlated with sub-
traction performance in both the blind (R2=0.34, p= 0.003) and
sighted groups (R2=0.66, p < 0.001), to the same extent (Fisher r to z
transformation, z=−1.31, p= 0.19; Fisher, 1921). The correlation
between ANS precision and subtraction performance when controlling
for working memory held in the both sighted group (sighted: R2= 0.43,
p=0.01) and was marginally significant in the blind group (blind:
R2= 0.14, p= 0.09).

Blind participants with retinopathy of prematurity (ROP, n=5)
performed slightly worse than non-ROP blind participants despite
comparable age and education (ROP mean accuracy on ANS
task= 69.70%, SD=4.56, mean w=0.31, SD=0.05; non-ROP mean
accuracy on ANS task =76.91%, SD=6.50; mean w=0.23,
SD=0.08). After excluding blind participants with ROP, ANS precision
was similar across blind and sighted (unpaired t-tests; accuracy: t
(32)=−1.08, p=0.29; Weber fraction: t(32)= 1.09, p=0.28).
Among blind participants without ROP, ANS precision (w) was still
correlated with subtraction and division performance (subtraction:
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Table 3
Summary of results.

Task Blind Sighted

Mean (SD) Min Max Mean (SD) Min Max

ANS Task (percent correct) 75.41 (6.76) 63.45 92 79.08 (4.8) 71.49 84.82
ANS Task (Weber fraction) 0.25 (0.08) 0.08 0.4 0.20 (0.07) 0.11 0.33
Subtraction Task 67.39 (25.96) 13.79 100 59.77 (24.72) 10.35 100
Division Task 30.21 (15.63) 6.25 65.63 33.33 (15.96) 15.63 68.75
Forward Letter Span Task 68.97 (15.55) 31.25 93.75 55.42 (9.41) 37.50 75.00
Backward Letter Span Task 59.01 (16.99) 14.29 85.71 41.90 (11.09) 21.43 57.14
Reading Words 89.10 (13.98) 36.67 100 93.11 (6.48) 75.00 100
Reading Non-words 83.15 (19.23) 20.00 100 88.28 (11.78) 54.55 96.97
Math Concepts 64.90 (13.14) 34.62 88.46 69.90 (10.70) 50.00 88.46
Verbal Task: Synonyms 81.60 (16.30) 50.00 100 83.33 (13.73) 50.00 100
Verbal Task: Antonyms 74.65 (17.11) 25.00 100 77.78 (13.61) 41.67 91.67
Verbal Task: Analogies 59.29 (21.48) 16.67 91.67 75.56 (17.10) 41.67 100
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R2=0.38, p=0.005; division: R2= 0.29, p= 0.02), even when con-
trolling for working memory (subtraction: R2= 0.28, p= 0.03; divi-
sion: R2= 0.21, p=0.07). In this group, ANS precision (w) remained
uncorrelated with reading ability (R2= 0.06, p=0.31) and with vo-
cabulary knowledge (R2=0.16, p=0.09) and remained correlated
with knowledge of math concepts (R2= 0.23, p= 0.04).

5. Discussion

5.1. Preserved ANS precision in congenital blindness

If visual experience with sets of objects is necessary for the normal
development of precision, then congenitally blind individuals should
exhibit impaired performance on a numerical approximation task.
Contrary to this hypothesis, congenitally blind and sighted individuals
demonstrated equal precision when estimating the numerosity of au-
ditory tone sequences. For both groups, performance was well de-
scribed by the same psychophysical function. These results suggest that
vision is not required for typical development.

We also found no evidence for the idea that blind individuals show
superior ANS precision on auditory sequential estimation tasks. Thus,
blindness does not render the ANS more “auditory” or “sequential,”
consistent with the idea that the ANS is a modality-independent system.
By contrast, two previous studies reported that blind individuals are
more precise on numerical estimation tasks that involve producing se-
quences of a particular numerical quantity (e.g., produce 35 footsteps
or 20 key presses) (Castronovo & Delvenne, 2013; Castronovo & Seron,
2007). There are a number of reasons why our results might differ from
these prior investigations. First, our numerical approximation task did
not require overt production. Participants listened to two sequences of
tones and judged which was more numerous. Unlike production tasks,
which are inherently subject-paced, the tones in our current experiment
occurred rapidly and were spaced at variable intervals. Furthermore,
we required participants to perform a concurrent verbal shadowing task
that has previously been shown to prevent counting (Cordes et al.,
2001). We adopted these measures because pilot testing revealed that
blind participants were better able to count the auditory stimuli than
sighted participants, producing nearly perfect performance, in-
dependent of numerical ratio. Thus, it is possible that some of the
previously reported advantages in numerical estimation among blind
individuals result not from changes in ANS precision itself but from
differences between blind and sighted groups’ ability to rapidly count.

It is worth nothing that one prior study reported slightly better
performance among blind individuals in a non-production task, speci-
fically when estimating the numerosity of sequences containing more
than 40 auditory tones (Castronovo & Seron, 2007). In the current study
we did not test any numerosities above 40. Therefore, it remains pos-
sible that blind individuals have increased precision for estimating the
numerosity of larger auditory sequences. It is unclear why changes to
ANS precision would affect performance with large but not small
numbers. One possibility is that performance on larger number se-
quences is more dependent on working memory abilities, which are
enhanced in individuals who are blind (Amedi et al., 2003; Dormal
et al., 2016; Occelli et al., 2016; Raz et al., 2007). The available data are
thus most consistent with the hypothesis that the ANS is neither spe-
cialized for a particular modality nor for a particular input format
(sequential versus simultaneous).

If not vision, what kinds of experiences are relevant to ANS devel-
opment? It may be that experiences estimating numerosities in any
modality or format are equivalently suited to drive improvements in
ANS precision. According to some theories, numerical processing shares
a common mechanism with other magnitude systems (e.g., estimation
of temporal duration (Allman, Pelphrey, & Meck, 2012; Bueti & Walsh,
2009; Meck & Church, 1983; Walsh, 2003). If so, numerical estimation
could plausibly even be improved by judging these other magnitudes
(Allman et al., 2012; Bueti & Walsh, 2009; Walsh, 2003; but see Odic

et al., 2013 for an alternative view). Furthermore, some evidence sug-
gests that educational and cultural experiences can hone the precision
of approximate number representations. Members of the indigenous
Amazonian Munduruku group have an extremely limited numerical
lexicon, little or no mathematical experience, and relatively poor ANS
precision. However, members of this group who completed at least
three years of education and therefore learned number words and
simple arithmetic had significantly better ANS precision than those
with less exposure to math, even when controlling for age (Piazza, Pica,
Izard, Spelke, & Dehaene, 2013). This suggests that math educa-
tion—whether primarily visual or auditory in nature – may sharpen
ANS representations (Piazza et al., 2013). Alternatively, the majority of
age-related improvement in the precision of the ANS could be in-
trinsically driven and result from maturation rather than learning. The
evidence we present here is most consistent with the hypotheses that
ANS precision changes regardless of experience, or that experience
tunes the ANS, but equally so regardless of the sensory modality and
format in which it occurs.

5.2. Preserved relationship between ANS and symbolic number abilities in
congenital blindness

Our second key finding is that individual differences in performance
on a numerical approximation task predict performance on a symbolic
math task in both sighted and congenitally blind individuals. Thus the
relationship between the ANS and symbolic numerical reasoning is
preserved even in those who have never experienced number visually,
and who arguably are less likely to experience number spatially because
of the unique capacity of the visual system to perceive large numbers of
objects in parallel (Anobile et al., 2014; Dakin et al., 2011). These re-
sults suggest that the link between ANS precision and symbolic math
abilities is not mediated by visual abilities. Note however that our re-
sults do not rule out the possibility that there is an independent re-
lationship between spatial and mathematical abilities. Whether spatial
abilities among blind individuals independently predict mathematical
performance is an important question to explore in future research.
Furthermore, since the current study is, to our knowledge, the first to
look at this relationship between ANS precision and mathematics in
blindness, it will be important to replicate our findings in future work.

The precise nature of the relationship between the ANS and math
remains an open question. According to one hypothesis, children with
better ANS precision may quickly learn to map number words to dis-
crete numerical quantities, whereas those with noisier ANS re-
presentations may have more trouble forming this mapping (Libertus
et al., 2011). Such an advantage in early math education may cause
those with better ANS precision to pursue and practice math. Consistent
with this idea, in the current experiment we find some evidence that
ANS precision is correlated with the knowledge of math facts. Another
possibility is that higher ANS precision allows individuals to better
evaluate their answers when performing math (Gilmore, McCarthy, &
Spelke, 2007; Libertus et al., 2012; Lyons & Beilock, 2011). For ex-
ample, an individual with poor ANS precision may be less likely or
slower to realize that 34–19=25 is implausible. A third possibility is
that more experience with math, or better symbolic math abilities,
hones the precision of the ANS (Piazza et al., 2013; Shusterman,
Slusser, Halberda, & Odic, 2016). Of course, some combination of these
influences is also possible.

5.3. Relationship between numerical and working memory abilities

Consistent with prior studies, we also found that symbolic math
performance correlated with working memory. However, the relation-
ship between the ANS and symbolic math persisted even when working
memory performance was factored out. In addition, we replicated
previous findings that congenitally blind individuals have superior
verbal working memory, relative to sighted individuals, as measured by
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participants’ forward and backward letter spans (Amedi et al., 2003;
Dormal et al., 2016; Occelli et al., 2016; Raz et al., 2007). Working
memory advantages associated with blindness can be traced back to
childhood: blind children between the ages of 7 and 13 are better at
remembering lists of pseudo-words than sighted children (Crollen et al.,
2011).

There is some evidence that blind children spontaneously rely on
working memory-demanding strategies to complete some numerical
tasks, such as counting the number of times that particular syllables
appear in a series of other syllables (Crollen et al., 2011). Whereas
sighted children use their fingers to keep track of syllable numbers,
blind children were more likely to count mentally (Crollen et al., 2011).
However, we found no evidence for the idea that blind adults were
more likely than the sighted to rely on working memory to solve ap-
proximate number tasks or solve simple arithmetic equations, as cor-
relations between arithmetic performance, ANS precision, and working
memory were equivalent across blind and sighted groups. Finally, al-
though blind subjects had substantially better working memory, their
performance on the arithmetic task was equivalent to the sighted.

One possibility is that the particular aspect of working memory that
is improved in blindness is not the same component of working memory
that is most relevant to solving symbolic math equations—at least not
the types of equations we tested here. Blind individuals consistently
show enhanced verbal working memory and serial or sequential
memory (Amedi et al., 2003; Crollen et al., 2011; Dormal et al., 2016;
Occelli et al., 2016; Raz et al., 2007). However, it is unclear whether
other aspects of working memory, such as spatial working memory, are
improved in blindness. At least one study directly compared verbal and
spatial working memory abilities in blind and sighted individuals and
found specific improvements in verbal working memory but not spatial
working memory in blindness (Occelli et al., 2016). Thus, it is possible
that blind individuals experience improvements in specific aspects of
working memory that do not necessarily translate to enhancements in
subtraction and division problem solving. By contrast, blind individuals
do outperform sighted individuals on multiplication tasks that rely
more heavily on verbal memory for arithmetic facts (Dehaene & Cohen,
1997; Dormal et al., 2016).

6. Conclusions

In summary, the present findings suggest that the cognitive building
blocks of numerical cognition develop independently of visual experi-
ence. First, the precision of approximate number representations is in-
distinguishable across blind and sighted individuals. Second, blind and
sighted individuals performed similarly on a simple timed arithmetic
task. Finally, ANS precision was correlated with symbolic number
reasoning in both blind and sighted individuals. Thus, despite the
strong links between numerical processing and visual abilities, we find
that key signatures of numerical cognition are preserved in the total
absence of vision.
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