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Abstract Despite the importance of programming to modern society, the cognitive and neural

bases of code comprehension are largely unknown. Programming languages might ‘recycle’

neurocognitive mechanisms originally developed for natural languages. Alternatively,

comprehension of code could depend on fronto-parietal networks shared with other culturally-

invented symbol systems, such as formal logic and symbolic math such as algebra. Expert

programmers (average 11 years of programming experience) performed code comprehension and

memory control tasks while undergoing fMRI. The same participants also performed formal logic,

symbolic math, executive control, and language localizer tasks. A left-lateralized fronto-parietal

network was recruited for code comprehension. Patterns of activity within this network distinguish

between ‘for’ loops and ‘if’ conditional code functions. In terms of the underlying neural basis,

code comprehension overlapped extensively with formal logic and to a lesser degree math.

Overlap with executive processes and language was low, but laterality of language and code

covaried across individuals. Cultural symbol systems, including code, depend on a distinctive

fronto-parietal cortical network.

Introduction
In 1800, only twelve percent of the world’s population knew how to read, while today the world liter-

acy rate is over eighty-five percent (https://ourworldindata.org/literacy). The ability to comprehend

programming languages may follow a similar trajectory. Although only an estimated 0.5% of the

world’s population is currently proficient at computer programming, the number of jobs that require

programming continues to grow. Coding is essential in scientific fields and in areas as diverse as

artistic design, finance, and healthcare. As many industries incorporate artificial intelligence or other

information technologies, more people seek to acquire programming literacy. However, the cogni-

tive and neural mechanisms supporting coding remain largely unknown. Apart from its intrinsic and

societal interest, programming is a case study of ‘neural recycling’ (Dehaene and Cohen, 2007).

Computer programming is a very recent cultural invention that the human brain was not evolution-

arily adapted to support. Studying the neural basis of code offers an opportunity to investigate how

the brain performs novel complex skills.

Hypotheses about how the human brain accommodates programming range widely. One recently

popular view is that code comprehension recycles mechanisms developed for human language

(Fedorenko et al., 2019; Fitch et al., 2005; Pandža, 2016; Portnoff, 2018; Prat et al., 2020). Con-

sistent with this idea, a recent study reported that individual differences in the ability to learn a sec-

ond language predict aptitude in learning to program (Prat et al., 2020). Computer languages

borrow letters and words from natural language and, in some programming languages like Python,

the meanings of the borrowed symbols (e.g. if,Xreturn,Xprint) relate to the meanings of the

same symbols in English. As in natural languages, the symbols of code combine generatively accord-

ing to a set of rules (i.e. a formal grammar). The grammars of language and that of code share
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common features, including recursive structure (Fitch et al., 2005). In natural languages, a phrase

can be imbedded within another phrase of the same syntactic category (Hauser et al., 2002;

Yang et al., 2017). Analogously, in programming languages, data structures, such as lists and trees,

can be recursive and a function can call itself. For example, in Python, IF conditionals can be embed-

ded within IF conditionals:

if (condition_1):

if (condition_2):

print('Both conditions are True.')

else:

print('Condition_1 is True, condition_2 is False.')

else:

print('Condition_1 is False. Condition_2 not evaluated.')

To give another textbook example, the factorial of a positive integer N can be computed using a

recursive Python function:

def factorial(N):

return N*factorial(N-1) if (N > 1) else 1

Here, the function ‘factorial’ is called in the definition of itself. Given these similarities

between programming languages and natural languages, one possibility then is that coding recycles

neurocognitive mechanisms involved in producing and comprehending natural language. Other cul-

turally-invented symbol systems, such as formal logic and mathematics do not appear to depend on

the same neural network as natural language. Like code, formal logic and mathematics borrow sym-

bols from language and are also hierarchical and recursive (e.g. (7*(7*(3+4)))). Unlike language, how-

ever, culturally-invented symbol systems are explicitly taught later in life. Computer coding,

mathematics and logic, all involve manipulation of arbitrary variables without inherent meaning (e.g.

X,XY,Xinput,Xii) according to a set of learned rules (McCoy and Burton, 1988). While each sym-

bol system has its own conventionalized way of referring to variables and its own set of rules —

indeed, these aspects differ somewhat among programming languages — there are nevertheless

many common features. For example, conditional and other connectives (e.g. ‘if. . .then’, ‘and’, ‘or’,

‘not’) occur in both formal logic and programming languages with closely related meanings. Con-

sider a function containing an if conditional written in Python,

def fun(input):

result = "result: "

if input[0]=='a':

result + = input[0].upper()

return result

The value of the ‘result’ variable depends on whether the ‘input’ meets the specific conditions

of the if statement. Similarly, in the logical statement ‘If both X and Z then not Y’ the value of the

result (Y) depends on the truth value of the condition ‘both X and Z’. One hypothesis, then, is that

coding depends on similar neural resources as other culturally-invented symbol systems, such as for-

mal logic and math.

Rather than recruiting perisylvian fronto-temporal areas, logic and math recruit a fronto-parietal

network, including the dorsolateral prefrontal cortex (PFC) and the intraparietal sulcus (IPS) as well

as putative symbol representations (i.e. numberform area) in inferior temporal cortex (Amalric and

Dehaene, 2016; Coetzee and Monti, 2018; Goel et al., 2007; Monti et al., 2009). This fronto-pari-

etal network overlaps partially with the so-called central executive/working memory system, which is

implicated in a variety of cognitive tasks that involve maintaining and manipulating information in

working memory, processes that are part and parcel of understanding and writing code

(Brooks, 1977; Duncan, 2010; Letovsky, 1987; Miller and Cohen, 2001; Soloway and Ehrlich,

1984; Weinberg, 1971; Zanto and Gazzaley, 2013) (for a review of the cognitive models of code

comprehension, see Von Mayrhauser and Vans, 1995). The central executive system is usually
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studied using simple rule-based tasks, such as the multisource interference task (MSIT), Stroop task,

and spatial or verbal working memory (Banich et al., 2000; Bunge et al., 2000; Bush and Shin,

2006; January et al., 2009; Milham et al., 2001; Woolgar et al., 2011; Zanto and Gazzaley,

2013; Zhang et al., 2013). Logic and math activate a similar network but also have unique neural

signatures. Within the PFC, logic in particular recruits more anterior regions associated with more

advanced forms of reasoning and symbol manipulation (Coetzee and Monti, 2018; Ramnani and

Owen, 2004). The degree to which code comprehension relies on the same network as these other

cultural symbol systems is not known.

Only a handful of previous studies have looked at the neural basis of code processing

(Duraes et al., 2016; Floyd et al., 2017; Ikutani and Uwano, 2014; Peitek et al., 2018;

Siegmund et al., 2014; Huang et al., 2019). Two studies observed larger fronto-parietal responses

when comparing code writing and editing to prose writing and editing (Floyd et al., 2017;

Krueger et al., 2020). When comprehension of code was compared to detection of syntactic errors

in code, activity in both fronto-parietal and putative language areas was observed (Siegmund et al.,

2014, Siegmund, 2017). None of these prior studies localized neural networks involved in language,

or cultural symbol systems such as math and logic, in the same participants — leaving the question

of direct neural overlap unanswered.

The goal of the current study was to ask whether basic computer code comprehension has a con-

sistent neural signature across people, and, if so, whether this signature is more similar to those of

other culturally-invented symbol systems (i.e. logic and math) or of natural language.

A group of expert programmers (average 11 years of programming experience) performed a

code comprehension task while undergoing functional magnetic resonance imaging (fMRI). We

chose a comprehension task partly because it could be analogous to understanding language

vignettes and because it is arguably simpler than writing or debugging code. On each real-code

trial, participants saw a short function definition, followed by an input and a possible output, and

judged whether the output was valid. In fake code control trials, participants performed a memory

task with unstructured text. A fake function was generated by scrambling a real function per line at

the level of word/symbol. Each fake function preserved the perceptual and lexical elements of a real

function, but was devoid of syntactic structure. The real-code condition contained two subtypes or

‘control structures’, for loops and if conditionals. We used multi-voxel-pattern analysis to decode for

from if functions to test whether the code-responsive cortical system encodes code-relevant informa-

tion. Finally, we examined the overlap of code comprehension with language (sentence comprehen-

sion), formal logic, and mathematical tasks. We also tested overlap of code with the MSIT to

determine whether the overlap with culturally-invented symbol systems (i.e. logic and math) is more

extensive than with simpler experimentally defined rule-based tasks.

Results

Behavioral results
Accuracy was similar across real and fake code trials (real M = 92%, SD = 0.045; fake M = 0.90,

SD = 0.069; binary logistic mixed regression, real to fake odds ratio b = 1.27; Wald’s z statistic,

z = 1.21; p=0.23). Accuracy was also similar across for and if trials (for M = 0.92, SD = 0.056; if

M = 0.92, SD = 0.076; if to for odds ratio b = 0.95; Wald’s z statistic, z = �0.28; p=0.77). Participants

were slower to respond to fake as compared to real-code trials (real M = 1.73 s, SD = 0.416; fake

M = 2.03 s, SD = 0.37; t(73) = 2.329, p=0.023) and slower to respond to for as compared to if trials

(for M = 1.85 s, SD = 0.46; if M = 1.60 s, SD = 0.44; t(58) = 2.127, p=0.038) (Figure 1—figure sup-

plement 1).

In the language/math/logic localizer task, participants performed least accurately on logic trials,

followed by math and language (logic M = 0.82, SD = 0.13; math M = 0.94, SD = 0.028; language

M = 0.98, SD = 0.023; one-way-ANOVA, F(2, 42)=18.29, p<0.001). Participants were slowest to

respond to logic trials, followed by math trials, and fastest on the language trials (logic M = 6.47 s,

SD = 2.42; math M = 4.93 s, SD = 1.32; language M = 4.03, SD = 1.27; one-way-ANOVA F(2, 42)

=7.42, p=0.0017) (Figure 1—figure supplement 1).

In the MSIT experiment, hard and easy conditions did not differ in terms of accuracy (hard

M = 0.97, SD = 0.038; easy M = 0.98, SD = 0.034; t(28) = �1.363, p=0.18), but the hard trials took
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significantly longer to respond to than the easy trials (hard M = 0.792 s, SD = 0.092; easy M = 0.506

s, SD = 0.090; t(28)=8.59, p<0.001) (Figure 1—figure supplement 1).

fMRI results
Code comprehension experiment
As compared to fake code, real-code elicited activation in a left-lateralized network of regions,

including the lateral PFC (middle/inferior frontal gyri, inferior frontal sulcus; mainly BA 44 and 46,

with partial activation in BA 6, 8, 9, 10, 47), the parietal cortex (the IPS, angular, and supramarginal

gyri; BA 7) and the pMTG and superior temporal sulcus (BA 22 and 37). Activity was also observed

in early visual cortices (Occ) (p<0.01 FWER, Figure 1; Supplementary file 2).

MVPA analysis revealed that for and if functions could be distinguished based on patterns of

activity within PFC (accuracy = 64.7%, p<0.001), IPS (accuracy = 67.4%, p<0.001) and pMTG (accu-

racy = 68.4%, p<0.001). for and if functions could also be distinguished within the early visual cortex

(accuracy = 55.7%, p=0.015), however, decoding accuracy was lower than in the other regions (F(3,

56)=4.78, p=0.0048) (Figure 2).

Overlap between code comprehension and other cognitive domains
The language/math/logic localizer task activated previously identified networks involved in these

respective domains. Responses to language were observed in a left perisylvian fronto-temporal lan-

guage network, to math in parietal and anterior prefrontal areas as well as posterior aspect of the

inferior temporal gyrus, and finally to logic, like math, in parietal and anterior prefrontal areas as well

as posterior aspect of the inferior temporal gyrus. Logic activated more anterior and more extensive

regions in PFC than math. The MSIT hard >easy contrast also activated a fronto-parietal network

including the IPS, however, the activation in the lateral frontal cortex was posterior and close to the

Figure 1. Whole-brain contrasts. Areas shown are p<0.05 cluster-corrected p-values, with intensity (both warm and cold colors) representing

uncorrected vertex-wise probability. In the maps for each localizer contrast, both warm and cold colors indicate activated vertices in the contrast, with

the cold color labelling the overlap with the code contrast.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Mean accuracy for (a) code comprehension and (b) localizer tasks.
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precentral gyrus. (Figure 3, see Supplementary file 2 for full description of activity patterns associ-

ated with language, logic, math and MSIT). Note that although in the current experiment logic,

math and language were compared to each other, the networks observed for each domain are simi-

lar to those previously identified with other control conditions (e.g. lists of non-words for language

and hard vs. easy contrast in a logic task) (e.g. Coetzee and Monti, 2018; Fedorenko et al., 2011).

Because code comprehension was highly left-lateralized, overlap analyses focused on the left

hemisphere. Right hemisphere results are reported in the appendix. Code comprehension

(real >fake) overlapped significantly above chance with all localizer tasks: logic, math, language and

MSIT (each task compared to chance p’s < 0.001, compared to code split-half overlap p’s < 0.005)

(Figure 3). The degree of overlap differed significantly across tasks (repeated-measures ANOVA: F

(3,42) = 5.04, p=0.0045). Code comprehension overlapped most with logic (logic >language), fol-

lowed by math and least with MSIT and language (Figure 3). Overlap with logic was significantly

higher than with all other tasks, while the overlaps with the other three tasks (language, math, MSIT)

were statistically indistinguishable from each other (post-hoc paired t-tests, FDR-corrected

p’s < 0.05) (Supplementary file 3). Note that overlap analyses control for the overall number of acti-

vated vertices in each contrast.

The overlap of code with logic and math was observed in the IPS, PFC, and a posterior portion of

the inferior temporal gyrus (IT). PFC overlap was localized to the anterior middle frontal gyrus

(aMFG, BA 46) and posteriorly in the precentral gyrus (BA 6). Overlap of code and the MSIT

(hard >easy) was also observed in the IPS, precental gyrus and a small portion of the inferior tempo-

ral sulcus. Although MSIT and code overlapped in frontal and parietal areas, like code with logic/

math, the precise regions of overlap within these general locations differed.

Finally, code overlapped with language (language >math) in portions of the inferior frontal gyrus

and the posterior aspect of the superior temporal sulcus/middle temporal gyrus. The overlap

between language and code was on average low, and the degree of overlap varied considerably

across participants (cosine sim range: [0.105, 0.480]), with only half of the participants showing

above chance overlap. Notably there was no relationship between overlap of code and language

and level of expertise, as measured either by years of experience coding (regression against code-

Figure 2. MVPA decoding accuracy in ROIs revealed by the code contrast. (a) The four search spaces (IPS, pMTG,

PFC, OCC in the left hemisphere) within which functional ROIs were defined for the MVPA. (b) The MVPA

decoding accuracy in the four ROIs. Error bars are mean ± SEM. *p<0.05. ***p<0.001.
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language overlap: R2 = 0, p=0.99; regression against code-math overlap: R2 = 0.033, p=0.52) or per-

formance on coding assessments (regression against code-language overlap: R2 = 0.033, p=0.52;

regression against code-math overlap: R2 = 0.064, p=0.36).

Lateralization
The group activation map suggested that code comprehension is left-lateralized. Analyses of individ-

ual lateralization indices showed that indeed, code comprehension was as left-lateralized as lan-

guage (Code lateralization index mean = 0.451, one sample t-test against 0: t(14) = 5.501, p<0.001;

Language mean = 0.393, t(14) = 5.523, p<0.001; paired t-test between code and language: t(14) =

1.203, p=0.25). Moreover, lateralization indices of code and language were highly correlated across

individuals (R2 = 0.658, p<0.001) (Figure 4).

Discussion
A consistent network of left-lateralized regions was activated across individuals during Python code

comprehension. This network included the intraparietal sulcus (IPS), several regions within the lateral

PFC and the posterior-inferior aspect of the middle temporal gyrus (pMTG). This code-responsive

network was more active during real than fake code trials, even though for expert Python coders,

the fake code task was more difficult (as measured by reaction time) than the real-code task. Involve-

ment of the fronto-parietal system, as opposed to the fronto-temporal language network, in code

 

Figure 3. Overlap between the brain map revealed by the code contrast and each of the brain maps revealed by

the localizer contrasts. (a) Brain map with the activated regions in the five contrasts reported in Figure 1

overlain. The language network is shown in transparent blue, math in transparent red, and logic in transparent

green. The regions activated in the MSIT contrast are enclosed in black outlines, and the code-responsive regions

are enclosed in yellow outlines. (b) Cosine similarity between code contrast and each localizer contrast, in each

hemisphere. Each dot represents the data from one participant. The dotted line on each bar indicates the null

similarity between code contrast and the given localizer contrast. The yellow dashed line in each hemisphere

indicates the empirical upper bound of the cosine similarity, the similarity between code comprehension and itself,

averaged across participants. Error bars are mean ± SEM. *p<0.05. **p<0.01. ***p<0.001.
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processing is consistent with prior work using more complex coding tasks, such as debugging and

editing (Siegmund et al., 2014, Siegmund, 2017; Huang et al., 2019; Krueger et al., 2020;

Floyd et al., 2017). The fact that fronto-parietal involvement is observed even for simple code func-

tion comprehension suggests that it is not related solely to cognitive control processes specific to

these more complex coding tasks.

Within this code-responsive neural network, spatial patterns of activation distinguished between

for vs. if code functions, suggesting that this network represents code-relevant information and is

not merely activated during the coding task due to general difficulty demands. In overlap analyses,

the code comprehension network was most similar to the fronto-parietal system involved in formal

logical reasoning and to a lesser degree math. By contrast overlap with the perisylvian fronto-tempo-

ral language network is low. Notably, in the current study, neural responses associated with lan-

guage, math and logic were localized partly relative to each other (e.g. logic >language). This

approach focuses on networks that are uniquely involved in one domain vs. another. The degree to

which areas shared across language, logic, and math are implicated in code comprehension remains

to be addressed in future work.

Code overlaps with logic
Code, logical reasoning, math and the MSIT task all activated aspects of the so-called fronto-parietal

executive control system. However, overlap of code with logic was most extensive, followed by

math and finally the MSIT. The difference between the MSIT task on the one hand and code compre-

hension, logic and math on the other, was particularly pronounced in the frontal lobe. There only

code, logic and math activated more anterior regions of PFC, including BA 46 and BA 9, although

logic-associated activation extended even more anteriorly than code. These findings suggest that

neural overlap between logic and code is specific, and not fully accounted for by the general involve-

ment of the central executive system. Note that although the logical reasoning task was more diffi-

cult than the language task, larger overlap with logic is unlikely to relate to task difficulty since the

current overlap analyses control for the overall number of activated vertices.

Previous studies also find that the fronto-parietal network, including anterior prefrontal areas, are

involved in logical reasoning (Prado et al., 2011; Tsujii et al., 2011). For example, anterior PFC is

active when participants solve formal logical problems with quantifiers (e.g. ‘all X are Y; Z is a X;

therefore Z is Y’) and connectives (e.g. ‘if X then Y; not Y; therefore not X’) and plays a key role in

deductive reasoning with variables (Coetzee and Monti, 2018; Goel, 2007; Goel and Dolan, 2004;

Monti et al., 2009; Reverberi et al., 2010; Reverberi et al., 2007; Rodriguez-Moreno and Hirsch,

2009).

A fronto-parietal network has also been consistently implicated in math (Friedrich and Friederici,

2013; Maruyama et al., 2012; Piazza et al., 2007; Wendelken, 2014). Some of the parietal

responses to math have been linked to the processing of quantity information (Eger et al., 2009;

Nieder, 2016; Nieder and Miller, 2004; Piazza and Eger, 2016; Roitman et al., 2007;

 

(a) (b) 

Figure 4. The lateralization index of the code contrast and the localizer contrasts. (a) The lateralization index of

the code contrast and the localizer contrasts. Each white dot stands for one participant, and the enlarged dots

represent the mean values. (b) The lateralization indices of code contrast and language contrast are highly

correlated.
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Tudusciuc and Nieder, 2009). For example, neurons in the IPS of monkeys, code numerosity of dots

(Nieder, 2016). However, much of the same fronto-parietal network is also active during the proc-

essing of mathematical statements free of digits and arithmetic operations (Amalric and Dehaene,

2018; Amalric and Dehaene, 2018; Wendelken, 2014). In the current study, both the anterior pre-

frontal areas and parietal areas involved in math also overlapped with code and logical reasoning.

Some of this activation could therefore reflect common operations, such as the manipulation of rules

and symbols in working memory. On the other hand, the lower overlap between coding and math,

as compared to coding and logic, could stem from math uniquely involving quantitative processing

in the current study.

The present evidence suggests that culturally-invented symbol systems (i.e. code comprehension,

formal logic and math) depend on a common fronto-parietal network, including the executive sys-

tem. As noted in the introduction, although each of these symbol systems has its unique cognitive

properties, they also have much in common. All involve the manipulation of abstract arbitrary sym-

bols without inherent semantic content (e.g. X,XY,Xinput,Xresult) according to explicit rules. In

the current logical inference and code experimental tasks, mental representations of several

unknown variables are constructed (for logic ‘X’, ‘Y’, and ‘Z’, for code ‘input’ and ‘result’) and

the relationships between them deduced according to rules of formal logic or code.

There are also important differences between the rules of logical inference and programming.

Take ‘if’ conditional judgement for example again. In formal logic, the statement ‘if P then Q’

doesn’t imply anything about what happens when P is false. On the contrary, in Python and most

other programming languages, the statement.

if condition == True:

do_something()

automatically implies that when the condition is false, the function ‘do_something()” isn’t exe-

cuted, unless otherwise specified. Learning to program involves acquiring the particular set of con-

ventionalized rules used within programming languages and a syntax that specifies how the

programming language in question expresses logical operations (Dalbey and Linn, 1985; Pea and

Kurland, 1984; Pennington, 1987; Robins et al., 2003). We speculate that such knowledge is

encoded within the fronto-parietal network identified in the current study. It is also worth pointing

out that although we found substantive overlap between the neural networks involved in code and

logic, it is possible that, at a finer neural scale, these functions dissociate. Future studies comparing

coders with different levels of expertise should test whether learning to code modifies circuits within

the code-responsive neural network identified in the current study and address whether learning to

code leads to specialization of a subset of this network for code in particular. A detailed understand-

ing of the neural basis of code will also require development of cognitive models of code

comprehension.

The involvement of the multiple-demand executive control system in
code comprehension
Code comprehension showed partial overlap with the MSIT task, particularly in the parietal cortex

and in posterior frontal areas. Previous work has noted cognitive and neural similarity between arbi-

trary small-scale working memory tasks, such as the MSIT, and culturally-derived formal symbol sys-

tems (Anderson, 2005; Qin et al., 2004). As noted in the introduction, the MSIT task is a classic

localizer for the executive function system (e.g. Stroop, n-back, and MSIT) (Duncan, 2010;

Fedorenko et al., 2013; Miller and Cohen, 2001; Woolgar et al., 2011; Zanto and Gazzaley,

2013; Zhang et al., 2013). Like code comprehension, most experimental tasks that activate the cen-

tral executive system involve the maintenance, manipulation and selection of arbitrary stimulus

response mappings according to a set of predetermined rules (Woolgar et al., 2011; Zhang et al.,

2013). For example, in the MSIT task among the many possible ways to map a visually presented

digit triplet to a button press, participants maintain and select the rule ‘press the button whose

index corresponds to the value of the unique digit in the triplet.’ The difficult condition requires

using this less habitual rule to make a response.

Previous studies also find that the fronto-parietal executive system is involved in rule maintenance

and switching, as well as variable representation. In one task-switching study, participants
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maintained a cued rule in working memory and the level of fronto-parietal activity increased with the

complexity of the rule maintained (Bunge et al., 2003). Patterns of neural activity within the execu-

tive system encoded which rule is currently being applied and activity is modulated by rule switching

(Buschman et al., 2012; Crittenden and Duncan, 2014; Xu et al., 2017). Finally, studies with non-

human primates find that neurons in the frontal lobe encode task-based variables (Duncan, 2010;

Kennerley et al., 2009; Nieder, 2013). Such processes, studied in the context of simple experimen-

tal tasks, may also play a role in code comprehension.

Although culturally-invented formal symbol systems and simple experimental rule-based tasks

(e.g. MSIT) share cognitive elements, the latter, unlike the former, involve simple rules that specify

stimulus response mappings, rather than mental manipulations of variables. An intriguing possibility

is that code comprehension and other culturally-invented symbol systems recycle a subset of the

neural machinery that originally evolved for the maintenance and manipulation of simpler variables

and rules (Anderson, 2005; Qin et al., 2004).

Code comprehension and language
In the current study, perisylvian fronto-temporal network that is selectively responsive to language

had low and variable overlap with the neural network involved in code comprehension. The regions

that did show some overlap between language and code (i.e. left inferior frontal and middle tempo-

ral gyri), have been implicated in high-level linguistic processing, including sentence-level syntax

(Friederici, 2017; Hagoort, 2005; Pallier et al., 2011; Bornkessel-Schlesewsky and Schlesewsky,

2013; Fedorenko and Thompson-Schill, 2014; Matchin and Hickok, 2020). The current results

therefore do not rule out the possibility that the language system plays some role in code. Neverthe-

less, on the whole, the results do not support the hypothesis that the language system is recycled

for code comprehension (see also Ivanova et al, in press). Previous studies also find that math and

formal logic do not depend on classic language networks (Amalric and Dehaene, 2016;

Monti et al., 2009). The low degree of overlap between code and language is intriguing given the

cognitive similarities between these domains (Fedorenko et al., 2019; Pandža, 2016; Peitek et al.,

2018; Portnoff, 2018; Prat et al., 2020; Siegmund et al., 2014). As noted in the introduction, pro-

gramming languages borrow letters and words from natural language, and both natural language

and code have hierarchical, recursive grammars (Fitch et al., 2005).

One possible explanation for low overlap between the perisylvian fronto-temporal language net-

work and code, is that the language system is evolutionarily predisposed to support natural lan-

guage processing in particular, and is therefore not generalizable even to similar domains, like

computer code and formal logic (Dehaene-Lambertz et al., 2006; Fedorenko et al., 2011). Timing

could also play a role. The perisylvian fronto-temporal language network may have a sensitive period

of development during which it is most capable of learning (Cheng et al., 2019; Mayberry et al.,

2018; Cheng et al., 2020; Ferjan Ramirez et al., 2016) By the time people learn to code, the net-

work may be incapable of taking on new cognitive functions. Indeed, even acquiring a second lan-

guage late in life leads to lower levels of proficiency and responses outside the perisylvian fronto-

temporal system (Hartshorne et al., 2018; Johnson and Newport, 1989; ). These observations sug-

gest that domain-specific systems, like the perisylvian fronto-temporal language network, are not

always amenable for ‘recycling’ by cultural inventions. The fronto-parietal system might be inherently

more flexible throughout the lifespan and thus more capable of taking on new cultural skills

(Riley et al., 2018).

Despite lack of direct overlap, lateralization patterns of language and coding were highly corre-

lated across individuals that is those individuals with highly left-lateralized responses to sentences

also showed highly left-lateralized responses to code. This intriguing observation suggests that the

relationship between code and language may be ontogenetic as well as phylogenetic. It is hard to

imagine how code in its current form could have been invented in the absence of language

(Fitch et al., 2005). Ontogenetically, code-relevant neural representations might be enabled by the

language system, even though they are distinct from it.

An analogous example comes from the domain of reading (Dehaene et al., 2010;

McCandliss et al., 2003). Reading-relevant regions, such as the visual word form area (VWFA), are

co-lateralized with the perisylvian fronto-temporal language network across people (Cai et al.,

2010). The VWFA has strong anatomical connectivity with the fronto-temporal language network

even prior to literacy (Bouhali et al., 2014; Saygin et al., 2016). Analogously, code comprehension
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may colonize a left-lateralized portion of the central executive system due to its stronger (i.e. within

hemisphere) connectivity with the perisylvian fronto-temporal language network.

Relationship to co-published work by Ivanova and colleagues
The current results are consistent with the co-published study by Ivanova and colleagues. Like the

current study, Ivanova et al report the involvement of a fronto-parietal network in code comprehen-

sion and low overlap with fronto-temporal language processing systems. The consistency of these

two studies is striking in light of the difference in the study designs. While the current study com-

pared code comprehension to a working memory control task with linguistic symbols, Ivanova et al.

compared code comprehension to matched verbal descriptions of program-like algorithms. In the

current study, the value of input variables was provided only after function presentation, by contrast,

the value was stipulated as part of the function in Ivanova et al. While the current study localized the

language network using a passive/active sentence comparison task relative to a math control condi-

tion, Ivanova and colleagues compared sentence comprehension to a non-word memory control

task. Finally, in addition to examining the neural basis of Python comprehension, Ivanova et al also

studied the neural basis of ScratchJr and found partially similar results.

There are also interesting differences across experiments that may relate to differences in design.

Both the current study and Ivanova et al’s Python comprehension tasks revealed robust responses

on prefrontal cortices, by contrast prefrontal responses to ScratchJr were weaker. Unlike Python,

ScratchJr doesn’t declare variables and update their values. Previous studies have implicated ante-

rior prefrontal cortices in variable manipulation (Monti et al., 2009; Diester and Nieder, 2007). The

degree of prefrontal involvement in code comprehension may therefore depend in part on whether

variable manipulation is involved. In the current study, we observed strong left-lateralization of code

comprehension and co-lateralization of code comprehension and language across people. By con-

trast, Ivanova and colleagues did not observe left-lateralization of code comprehension. Since Iva-

nova and colleagues compared code comprehension to a sentence reading task, left-lateralization

may have been obscured by subtracting out a left-lateralized pattern associated with sentence proc-

essing. Alternatively, the Ivanova study focused on the so- called ‘syntactic’ aspects of code compre-

hension rather than the semantics of code by comparing code comprehension to matched sentences

describing similar algorithms. It is possible that the semantics or algorithmic aspects of code are

more left-lateralized. Notably, since the current sample is relatively small (n = 15), any differences

between the current study and the Ivanova findings should be interpreted with caution and repli-

cated in future work.

Conclusions
A fronto-parietal cortical network is consistently engaged in expert programmers during code com-

prehension. Patterns of activity within this network distinguish between FOR and IF functions. This

network overlaps with other culturally-invented symbol systems, in particular formal logic and to a

lesser degree math. By contrast, the neural basis of code is distinct from the perisylvian fronto-tem-

poral language network. Rather than recycling domain-specific cortical mechanisms for language,

code, like formal logic and math, depends on a subset of the domain general executive system,

including anterior prefrontal areas. The executive system may be uniquely suited as a flexible learn-

ing mechanism capable of supporting an array of cultural symbol systems acquired in adulthood.

Materials and methods

Participants
Seventeen individuals participated in the study; one did not complete the tasks due to claustropho-

bia, and another was excluded from analyses due to excessive movement (>2 mm). We report data

from the remaining fifteen individuals (three women, age range 20–38, mean age = 27.4, SD = 5.0).

All participants had normal or corrected to normal vision and had no known cognitive or neurologi-

cal disabilities. Participants gave informed consent according to procedures approved by the Johns

Hopkins Medicine Institutional Review Board (IRB protocol number: NA_00087983).

All participants had at least 5 years of programming experience (range: 5–22, mean = 10.7,

SD = 5.2), and at least 3 years of experience with Python (range: 3–9, mean = 5.7, SD = 1.8).
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Behavioral pre-test
In addition to self-reported programming experience, Python expertise was evaluated with two out-

of-scanner Python exercises (one easier and one more difficult) the week prior to the fMRI experi-

ment. These exercises also served to familiarize participants with the particular Python expressions

that would be used during the fMRI experiment.

The easier exercise consisted of three phases. During the first phase (initial test), we evaluated

participants’ knowledge of every built-in Python function that would appear in the stimuli of the

fMRI experiment. Participants were asked to type the output of a single-line print() statement

(e.g. for ‘print(”3.14’.split(‘1’))' one should type ‘[‘3.’,X‘4’]’). On average partici-

pants answered M = 82.9% (SD = 6.9%) of the questions correctly (range: 70–96%). Since even

expert programmers may not have used a particular function in the recent past, the second phase

(recap) explicitly reviewed the definitions and purposes of all of the relevant functions and expres-

sions. During the final phase (retest), participants were once again asked to type the output of a sin-

gle-line statement for each function (M = 92.0% (SD = 7.5%), range: 72.4–100%).

The more difficult exercise evaluated the participants’ knowledge about when and how to use

Python functions and expressions. Each participant answered sixteen questions consisting of a code

snippet with a blank. A prompt was presented alongside the code snippet to explain what the snip-

pet should output if executed. The participant was asked to fill in the blank in order to complete the

code (see the subsection ‘example of the difficult out-of-scanner exercise’ in the appendix). The

questions were designed by the experimenter to cover some of the objectives specified in the exam

syllabus of the Certified Associate in Python Programming Certification held by the Python Institute

(https://pythoninstitute.org/certification/pcap-certification-associate/pcap-exam-syllabus/). On aver-

age, the participants got 64.6% (SD = 16.6%) of the questions correct (range: 37.5–93.75%).

fMRI task design and stimuli
Code comprehension experiment
In real-code comprehension trials, participants were presented with Python functions designed for

the purposes of the experiment. In fake code control trials, they were presented with incomprehensi-

ble scrambled versions of the same functions (for details on real and fake code, see below). To help

participants distinguish between real and fake code trials and to prevent the participants from erro-

neously attempting to parse fake code, real-code appeared in white text and fake code in yellow

text.

Each trial had three phases: function (24 s), input (6 s), and question (6 s) (Figure 5). First, partici-

pants viewed a Python function for 24 s, followed by a 500 millisecond fixation-cross delay. During

the input phase, the original code function re-appeared on the screen with a potential input below

consisting of a single-line character string (6 s). Participants were instructed to use the input to men-

tally derive the output of the function shown during the input phase. After the input phase there was

a 500 millisecond fixation-cross delay followed by a proposed output along with the prompt ‘TRUE?’

Participants were asked to determine whether the output was correct within 6 s. All trial phases had

a shortening bar at the bottom of the screen indicating the remaining time during that particular

phase of the trial. Each trial was followed by a 5 s inter-trial interval during which the text ‘Your

response is recorded. Please wait for the next trial.’ was shown on the screen.

Each real-code function consisted of five lines. The first line (defXfun(input):) and the last

(returnXresult) were always the same. The second line always initialized the result variable, and

the third and fourth lines formed a control structure (either a for loop or an if conditional) that

may modify the value of the result. real-code trials were divided into two sub-conditions, for and

if, according to the control structures the functions contained. Each condition included two variants

of the for or if functions (see the subsections ‘detailed information about the stimuli’ and ‘the two

variants of each control structure’ in the appendix). All functions took a letter string as input and per-

formed string manipulation.

Fake code trials were analogous to the real-code trials in temporal structure (i.e. function, input,

question). However, no real-code was presented. Instead, participants viewed scrambled text and

were asked to remember it. During the function phase of a fake code trial, participants saw a scram-

bled version of a real-code function. Scrambling was done within line at word and symbol level (Fig-

ure 5, bottom row). Because fake functions were derived from real functions, the words, digits and
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operators that existed in real functions were preserved; however, none of the scrambled lines com-

prised an executable Python statement. During the input phase, an additional fake input line

appeared below the fake function. The fake input line didn’t interact with the fake function, the par-

ticipants only had to memorize this line. During the question phase, a new character line appeared

along with the prompt ‘SAME?’ Participants judged whether this line had been presented during the

function and input phases (including the additional input line), or it came from a different fake func-

tion. The correct response was ‘true’ for half of the real-code trials and half of the fake code trials.

There were six task runs, each consisting of 20 trials, eight real if code, eight real for code and

four fake code trials. Each participant saw a total of 48 for functions (24 per variant), 48 if functions

(24 per variant), and 24 fake functions (12 fake for, and 12 fake if functions). After each run of the

task, participants saw their overall percent correct and average response time. Participants were

divided into two groups such that the variants of the functions were counterbalanced across groups;

the same participant never saw different variants of the same function. The order of the presentation

of the functions was pseudo-randomized and balanced across participants. In total, 192 real func-

tions (96 per group) and 48 fake functions (24 per group) were used in the experiment. All the func-

tions are listed in Supplementary file 1. We permuted the order of the functions systematically such

that each participant saw a unique order (see the subsection ‘algorithm for stimulus permutation’ in

the appendix).

Localizer Tasks
During a separate MRI session, participants took part in two localizer experiments. A single experi-

ment was used to localize responses to formal logic, symbolic math, and language using each condi-

tion as the control for the others: logic/math/language localizer. The task design was adapted from

Monti et al., 2009, Monti et al., 2012 (Kanjlia et al., 2016; Monti et al., 2009; Monti et al.,

2012). On language trials, participant judged whether two visually presented sentences, one in

active and one in passive voice, had the same meaning (e.g. ‘The child that the babysitter chased

ate the apple’ vs ‘The apple was eaten by the babysitter that the child chased’). On math trials, par-

ticipant judged whether the variable X had the same value across two equations (e.g. ‘X minus

twenty-five equals forty-one’ vs ‘X minus fifty-four equals twelve’). On formal logic trials, participant

judged whether two logical statements were consistent, where one statement being true implied

the other also being true (e.g. ‘If either not Z or not Y then X’ vs ‘If not X then both Z and Y’).

Figure 5. The experiment design. The FAKE function (bottom row) in this figure is created by scrambling the words and symbols in each line of the

REAL function (top row). Note that for the purpose of illustration, the relative font size of the text in each screen shown in this figure is larger than what

the participants saw during the actual MRI scan.

Liu et al. eLife 2020;9:e59340. DOI: https://doi.org/10.7554/eLife.59340 12 of 22

Research article Neuroscience

https://doi.org/10.7554/eLife.59340


Each trial began with a 1 s fixation cross. One member of a pair appeared first, the other follow-

ing 3 s later. Both statements remained on the screen for 16 s. Participants pressed the right or left

button to indicate true/false. The experiment consisted of 6 runs, each containing 8 trials of each

type (language/math/logic) and six rest periods, lasting 5 s each. All 48 statement pairs from each

condition were unique and appeared once throughout the experiment. In half of the trials, the cor-

rect answer was ‘true’. Order of trials was counterbalanced across participants in two lists.

Although all of the tasks in the language/math/logic localizer contain language stimuli, previous

studies have shown that sentences with content words lead to larger responses in the perisylvian

fronto-temporal language network than spoken equations or logical statements with variables

(Kanjlia et al., 2016; Monti et al., 2009; Monti et al., 2012). The perisylvian fronto-temporal lan-

guage network shows enhanced activity for stimuli that contain meaningful lexical items and sen-

tence-level syntax (e.g. Fedorenko et al., 2016). Furthermore, previous studies have found that

responses to language, logic and math when compared to each other were similar to what was

observed for each domain relative to independent control conditions (e.g. sentences relative to lists

of non-words for language, and easy vs. hard logic problems; Kanjlia et al., 2016; Monti et al.,

2009, Monti et al., 2012).

The multi-source interference task (MSIT) was adapted from Bush and Shin, 2006 to engage

executive control processes and localize the multiple-demand network. On each trial, a triplet of dig-

its was shown on the screen, two of which were the same. The participant pressed a button (1, 2, or

3) to indicate the identity of the target digit that was different from the distractors. For example, for

‘131’ the correct response is ‘3’; for ‘233’ it is ‘2’. The participants always pressed buttons ‘1’, ‘2’,

and ‘3’ with their index, middle, and ring fingers, respectively.

MSIT consisted of interference blocks and control blocks, each containing 24 trials (1.75 s each).

On interference trials, the location of the target digit was inconsistent with the identity of the digit

(e.g. trials such as ‘133’ or ‘121’ did not occur). On control trials, the distractors were always ‘0’, and

the target digit was always at the same location as its identity. In other words, there were only three

kinds of control trial, namely ‘100’, ‘020’, and ‘003’.

Participants performed 2 runs of MSIT. Each run began with 15 s of fixation, followed by four

interference blocks and four control blocks interleaved, and ended with another 15 s of fixation.

Each block lasted 42 s. The order of the blocks was balanced within and between participants. Trial

order was arranged such that all 12 interference trials appeared exactly twice in an interference

block, and all three control trials appeared exactly six times in a control block. Identical trials never

appeared in succession, and the order of the trials was different across all 8 blocks of the same kind.

Data acquisition
MRI data were acquired at the F.M. Kirby Research Center of Functional Brain Imaging on a 3T Phil-

lips Achieva Multix X-Series scanner. T1-weighted structural images were collected in 150 axial slices

with 1 mm isotropic voxels using the magnetization-prepared rapid gradient-echo (MP-RAGE)

sequence. T2*-weighted functional BOLD scans were collected in 36 axial slices (2.4 � 2.4�3 mm

voxels, TR = 2 s). We acquired the data in one code comprehension session (six runs) and one local-

izer session (2 runs of MSIT followed by 6 runs of language/math/logic), with the acquisition parame-

ters being identical for both sessions.

The stimuli in both the code comprehension and localizer sessions were presented with custom

scripts written in PsychoPy3 (https://www.psychopy.org/, Peirce et al., 2019). The stimuli were pre-

sented visually on a rear projection screen, cut to fit the scanner bore, with an Epson PowerLite 7350

projector. The resolution of the projected image was 1600 � 1200. The participant viewed the

screen via a front-silvered, 45˚inclined mirror attached to the top of the head coil.

fMRI data preprocessing and general linear model (GLM) analysis
Data were analyzed using Freesurfer, FSL, HCP workbench, and custom in-house software written in

Python (Dale et al., 1999; Smith et al., 2004; WU-Minn HCP Consortium et al., 2013). Functional

data were motion corrected, high-pass filtered (128 s), mapped to the cortical surface using Freesur-

fer, spatially smoothed on the surface (6 mm FWHM Gaussian kernel), and prewhitened to remove

temporal autocorrelation. Covariates of no interest were included to account for confounds related

to white matter, cerebral spinal fluid, and motion spikes.
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The four real-code (for1, for2, if1, if2) and corresponding fake code conditions were entered

as separate predictors in a GLM after convolving with a canonical hemodynamic response function

and its first temporal derivative. Only the images acquired during the twenty-four-second function

phase were modeled.

For the localizer experiment, a separate predictor was included for each of the three conditions

(language, math, and logic) modeling the 16 s during which the statement pair was presented, as

well as a rest period (5 s) predictor. In the MSIT task, the interference condition and the control con-

dition were entered as separate predictors.

Each run was modeled separately, and runs were combined within each subject using a fixed-

effects model (Dale et al., 1999; Smith et al., 2004). For the group-level analysis across partici-

pants, random-effects models were applied, and the models were corrected for multiple compari-

sons at vertex level with p<0.05 false discovery rate (FDR) across the whole brain. A nonparametric

permutation test was further implemented to cluster-correct at p<0.01 family-wise error rate.

ROI definition
For each participant, four code-responsive functional ROIs were defined to be used in the MVPA

analysis. First, random-effects whole-brain univariate analysis for the real >fake code contrast

revealed four major clusters in the left hemisphere: the intraparietal sulcus (IPS), the posterior middle

temporal gyrus (pMTG), the lateral PFC, and the early visual cortex (Occ). These clusters were used

to define group search spaces. Each search space was defined by combining parcels from Schaefer

et al. that encompassed each cluster (400-parcel map, Schaefer et al., 2018). Next, individual func-

tional ROIs were defined within these clusters by taking the top 500 active vertices for the real >fake

contrast within each participant.

MVPA
MVPA was used to distinguish for and if functions based on the spatial activation pattern in code-

responsive ROIs. Specifically, we used the support vector machine (SVM) implemented in the Python

toolbox Scikit-learn (Chang and Lin, 2011; Pedregosa et al., 2011).

For each participant, the spatial activation pattern for each function was defined as the beta

parameter estimation of a GLM with each function entered as a separate predictor. Within each ROI

in each participant, the 96 spatial patterns elicited by the real functions were collected. Normaliza-

tion was carried out separately for the for condition and if condition such that in either condition,

across all vertices and all functions, the mean was set to 0 and standard deviation to 1. The purpose

of the normalization is to eliminate any difference in the baselines of the two conditions while pre-

serving distinctive spatial patterns.

The whole dataset was split into a training test (90%, 86 functions) and a testing set (10%, 10

functions), where in each set, half of the patterns came from for functions. A linear SVM (regulariza-

tion parameter C = 5.0) was trained on the training set and tested on the testing set. Classification

was carried out on 100 different train-test splits, and the average accuracy value was recorded as

the observed accuracy.

We tested the classifier performance against chance (50%) using a combined permutation and

bootstrapping approach (Schreiber and Krekelberg, 2013; Stelzer et al., 2013). We derived the

t-statistic of the Fisher-z transformed accuracy values against chance (also Fisher-z transformed). The

null distribution for each participant was generated by first shuffling the condition labels 1000 times,

then computing the mean accuracy derived from the 100 train-test split of each shuffled dataset.

Then, a bootstrapping method was used to generate an empirical distribution of the t-statistics. In

each of the 106 iterations of the bootstrapping phase, one Fisher-z transformed null accuracy value

(out of 1,000) per participant was randomly selected, and a one sample t-test was applied to the null

sample. The empirical p-value of the real t-statistic was defined as the proportion of the null t-statis-

tics greater than the real value.

Overlap analysis
For each participant, and in each hemisphere, we used cosine similarity to quantify the overlap of

the activated vertices between code comprehension and each of the four localizer contrasts: lan-

guage (language >math), math (math >language), logic (logic >language), and multi-source
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interference (hard >easy). First, we generated the binary activation map for each contrast. A vertex

was assigned the value one if the significance of its activation is above the 0.05 (FDR-corrected)

threshold, and 0 otherwise. Each binary map was regarded as a vector, and the cosine similarity

between two vectors (e.g. code comprehension and logic) was defined as the inner product of the

vectors divided by the product of their respective lengths (norms). Note that this measure controls

for overall vector length (i.e. the overall number of active voxels in each contrast). The cosine similar-

ities of code to each of the localizer tasks was then compared using repeated-measure ANOVA and

post-hoc pairwise comparisons with false discovery rate (FDR) correction.

The empirical lower bound was calculated separately for each localizer task to account for differ-

ences in the number of activated vertices across tasks. For each participant, for each localizer task,

we computed the cosine similarity between the binary map for code comprehension and a shuffled

binary map for each localizer task. This step was repeated 100 times to generate the null distribution

of the similarity values.

We used a bootstrapping approach to test whether each observed cosine similarity value was sig-

nificantly above the empirical lower bound. For each localizer task, we randomly selected one simi-

larity value from the null distribution of one participant and computed a null group mean similarity.

This step was repeated 106 times to derive the null distribution of the null group mean similarity.

The empirical p-value of the real group mean similarity was defined as the proportion of the null val-

ues greater than the real value.

We operationalized the empirical upper bound as the cosine similarity of code comprehension

and itself. For each participant, we split the data for code comprehension in half, ran a GLM for each

half, and derived two binary maps whose cosine similarity was computed. We averaged all the simi-

larity values resulting from the 10 possible splits of the six runs and across all participants.
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Appendix
An example of the difficult out-of-the-scanner exercise

Consider the following code:

###

def xx(a):

b = a+3

return

if xx(1)= =________:

print( �HEY!!")

###

What keyword should be filled in the blank if we want the code to

print �HEY!!"?

(It’s a keyword. There should be only letters in your answer.)

Detailed information about the stimuli
Across all real functions, the variable names input, result, and ii, were the same, and only the 12

built-in functions (capitalize(),Xisalnum(),Xisalpha(),Xisdigit(),Xlen(),Xlower(),

Xrange(),Xsorted(),Xsplit(),Xstr(),Xswapcase(),XandXupper()) and three expres-

sions (list comprehension, slice notation, and string formatting, see Supplementary file 1 for exam-

ples) tested during the screening exercise were included in the user-defined functions.

The addition operator (+) occurred in all functions, but always meant string concatenation rather

than numeric addition, and never took a numeric as operand. In each group, the multiplication oper-

ator (*) existed in 32 out of the 96 real functions, and 10 of them took a numeric as one of its oper-

ands. However, in all these instances, the ‘multiplication’ meant repetition of strings or lists instead

of numeric multiplications (e.g. ‘abc’*3 results in ‘abcabcabc’). In each group, 12 out of the 96

real functions contained a comparison to a numeric value, such as ‘len(input)>5’.

The two variants of each control structure
We designed two variants to implement each control structure, for and if. In the first variant of a

for code, the for loop was implemented in the canonical way. In the second variant of a for code,

we implemented the loop with a Python-specific expression ‘list comprehension’, where the opera-

tion to be performed on each element in a list (or string) was stated before specifying the list to be

iterated over. In the first variant of an if code, the if conditional was implemented in the canonical

way. In the second variant of an if code, the conditional was implemented by first stating the action

to take if a condition is true, then multiplying this action to the true/false judgement statement of

the condition. There was not a formal jargon for this kind of implementation, for the sake of conve-

nience, we called it ‘conditional multiplication’ in this study. Please refer to Supplementary file 1 for

examples of each variant.

The algorithm for stimulus permutation
In this experiment, there were five conditions, ‘FOR1’, ‘FOR2’, ‘IF1’, ‘IF2’, and ‘FAKE’. For simplicity,

from here on we label them as ‘A’, ‘B’, ‘C’, ‘D’, and ‘E’, respectively.

There were 120 permutations for five distinct labels, such as ‘ABCDE’, ‘BCDEA’, ‘CDEAB’,

‘DEABC’, ‘EABCD’, ‘ACBDE’, ‘CBDEA’, etc. Each run consisted of 20 functions, which was 4 permu-

tations of 5 labels. Therefore, for each run, we drew four permutations out of the 120 possible per-

mutations. So, the order a participant saw in the first run can be:

ABCDE BCDEA CDEAB DEABC

And the order in the second run can be:

EABCD ACBDE CBDEA BDEAC
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The permutations were allocated such that every participant saw 24 permutations across all six

runs, and every five participants saw all the 120 permutations.

After determining the order of the conditions, we assigned actual instances of the conditions to

the labels. The order of presentation for the functions in each condition was also permuted such that

a function in run 1 for participant one appeared in run 2 for participant 2, run 6 for participant 6, run

1 for participant 7, and so on. Specifically, the first run of the first participant could be:

A1B1C1D1E1 B2C2D2E2A2 C3D3E3A3B3 D4E4A4B4C4

While the first run of the second participant could be:

A5B5C5D5E5 B6C6D6E6A6 C7D7E7A7B7 D8E8A8B8C8

The second participant still saw A1, B1, C1, . . .. . . D4, E4, just in some later runs.

As a result of permutations of both conditions and functions within condition, all of the partici-

pants saw a unique order of presentation.

Overlap analysis in the right hemisphere
Code comprehension (real >fake) overlapped significantly above chance with all localizer tasks: logic,

math, language and MSIT (each task compared to chance p’s < 10–6 compared to code split-half

overlap p’s < 10–6). The degree of overlap differed significantly across tasks (repeated-measures

ANOVA: F(3,42) = 3.03, p=0.040). Post-hoc paired t-tests (FDR-corrected p’s < 0.05) revealed that

the overlap with logic was significantly higher than with math and MSIT, but indistinguishable from

the overlap with language. The overlaps with the other there tasks (language, math, MSIT) were sta-

tistically indistinguishable from each other (Supplementary file 3).
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