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Abstract
What is the neural organization of the mental lexicon? Previous research suggests that partially distinct cortical networks
are active during verb and noun processing, but what information do these networks represent? We used multivoxel pattern
analysis (MVPA) to investigate whether these networks are sensitive to lexicosemantic distinctions among verbs and among
nouns and, if so, whether they are more sensitive to distinctions among words in their preferred grammatical class.
Participants heard 4 types of verbs (light emission, sound emission, hand-related actions, mouth-related actions) and 4
types of nouns (birds, mammals, manmade places, natural places). As previously shown, the left posterior middle temporal
gyrus (LMTG+), and inferior frontal gyrus (LIFG) responded more to verbs, whereas the inferior parietal lobule (LIP),
precuneus (LPC), and inferior temporal (LIT) cortex responded more to nouns. MVPA revealed a double-dissociation in
lexicosemantic sensitivity: classification was more accurate among verbs than nouns in the LMTG+, and among nouns than
verbs in the LIP, LPC, and LIT. However, classification was similar for verbs and nouns in the LIFG, and above chance for the
nonpreferred category in all regions. These results suggest that the lexicosemantic information about verbs and nouns is
represented in partially nonoverlapping networks.
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Introduction
Words separate into classes based on the types of meanings
they typically convey and the grammatical role they play in
sentences. A key distinction that occurs across languages is the
one between nouns and verbs (Sapir 2004). Nouns tend to refer
to entities (e.g., “the swan,” “the barn”), whereas verbs tend to
describe events situated in time and relations among entities
(e.g., “to lick,” “to sparkle”), thus, reflecting the basic proposi-
tional acts of reference and predication (Sasse 1993; Bhat 2000;
Peterson 2003; Croft 2005; Langacker 1987, 2008). Early neuro-
psychological studies have identified grammatical class as a
candidate organizing principle of the mental lexicon and its
neural basis: focal brain damage leads to a disproportionate
impairments with verbs in a subset of patients, while others
are more impaired in processing nouns (Goodglass et al. 1966;
Luria and Tsvetkova 1967; McCarthy and Warrington 1985;

Miceli et al. 1984, 1988; Zingeser and Berndt 1990; Caramazza
and Hillis 1991; Damasio and Tranel 1993; Daniele et al. 1994;
Hillis and Caramazza 1995; Shapiro et al. 2000; Collina et al.
2001; Luzzatti et al. 2002; Rapp and Caramazza 2002; Shapiro
and Caramazza 2003a, 2003b; Laiacona and Caramazza 2004;
Aggujaro et al. 2006). For example, when asked to describe a
scene, some patients have difficulty naming the events
depicted and fail to produce specific verbs for actions, either
omitting the verbs altogether or using general verbs such as
“be” or “do.” By contrast, patients with selective deficits for
nouns have difficulty naming the objects in the scene and tend
to use generic terms such as “things” and “stuff” (Mätzig et al.
2009).

Consistent with the dissociations documented in the neuro-
psychological literature, neuroimaging studies with healthy par-
ticipants have identified cortical regions that are preferentially
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recruited during either verb or noun processing (for reviews, see
Vigliocco et al. 2011; Crepaldi et al. 2013). Two regions that
emerge across studies as specifically relevant to verb processing
are the left middle temporal gyrus (LMTG+) and the left inferior
frontal gyrus (LIFG). Both regions respond more to verbs than
nouns, adjectives, and nonlinguistic stimuli, across a variety of
tasks, including semantic similarity judgments, lexical decision,
and synonym judgments (Martin et al. 1995; Fujimaki et al. 1999;
Perani et al. 1999; Davis et al. 2004; Li et al. 2004; Kable et al.
2002, 2005; Tranel et al. 2005; Bedny and Thompson-Schill 2006;
Thompson et al. 2007; Kemmerer et al. 2008; Liljeström et al.
2008; Tyler et al. 2003, 2008; Yu et al. 2011, 2012; Bedny,
Caramazza, et al. 2008; Bedny, McGill, et al. 2008, 2011, 2014).
Larger responses are observed not only for action verbs that
involve motion (e.g., “to stroke” and “to give”), but also mental
state verbs (e.g., “to think” and “to want”), changes of state verbs
(e.g., “to rust”) and verbs of emission (e.g., “to glow”; Grossman
et al. 2002; Davis et al. 2004, Kemmerer et al. 2008; Bedny,
Caramazza, et al. 2008; Bedny, McGill, et al. 2008, 2011, 2014).
Larger responses to verbs in the LMTG+ persist even when verbs
and nouns are matched on imageability and are robust to
changes in sensory experience, such as congenital blindness
(Noppeney et al. 2003, Bedny and Thompson-Schill 2006, Bedny
and Saxe 2012).

A separate set of cortical areas has been identified as prefer-
entially responsive to nouns, including the left inferior parietal
lobule (LIP) and angular gyrus, the left inferior temporal cortex
(LIT), and the precuneus (PC) (Fujimaki et al. 1999; Li et al. 2004;
Tyler et al. 2004; Bedny and Thompson-Schill 2006; Marangolo
et al. 2006; Shapiro et al. 2005, 2006; Thompson et al. 2007;
Berlingeri et al. 2008; Liljeström et al. 2008). Together these
findings suggest that verbs and nouns are processed by par-
tially nonoverlapping cortical networks.

The cognitive role of preferential responses to verbs and
nouns remains an open question. One hypothesis is that some
of the brain regions responding preferentially to one grammati-
cal class over another are selectively involved in representing
the lexicosemantic information associated with it. For example,
one hypothesis is that the LMTG+ preferentially represents the
lexicosemantics of verbs, whereas noun-responsive regions
(e.g., LIP) are preferentially involved in representing the lexico-
semantics of nouns. If so, we would expect such regions not
only to show high levels of activity for their preferred grammat-
ical class but also to show sensitivity to lexicosemantic distinc-
tions within the preferred grammatical class.

In the case of the LMTG+, it has been hypothesized that it
either represents the meanings of verbs, aspects of verb gram-
mar that are closely related to verb meaning (e.g., argument
structure), or both (Thompson et al. 2007; Hernández et al.
2014). Since verbs refer to the relations among entities, they dif-
fer amongst themselves according to the number and type of
entities they relate (Jackendoff 1983; Tanenhaus et al. 1989;
Frawley 1992). For instance, while a stroking event presupposes
2 entities (i.e., an agent doing the stroking and an object being
stroked), sparkling only involves a sparkling object. This aspect
of verb meaning is intimately intertwined with grammatical
behavior: verbs that denote events involving 1 versus 2 entities
also require 1 versus 2 arguments in the surface grammar,
making “she stroked the cat” and “the jewel sparkled” well-
formed, but “she stroked” and “the jewel sparkled the crown”
not well formed (Chomsky 1981; Gleitman et al. 2005). Verbs
also differ amongst themselves in more fine-grained ways. For
example, emission verbs such as “glow” differ from each other
according to the substance emitted (e.g., light “to glow” vs.

sound “to clang”) as well the intensity of emission (e.g., “to
blaze” vs. “to glow”, Faber and Usón 1999). Here, we investigate
the hypothesis that the LMTG+ encodes the meanings of verbs
and/or the grammatical information related to meaning
(henceforth, lexicosemantic properties). If so, the LMTG+
should be sensitive to lexicosemantic distinctions among
verbs.

Conversely, we would expect cortical areas that play a role
in representing the meanings of nouns to distinguish among
types of entities according to dimensions that are relevant to
their meanings, such as their animacy (e.g., rock vs. bear) and,
among inanimates, objects versus places (e.g., rock vs. desert),
natural vs. manmade (e.g., desert vs. barn), and perhaps their
physical characteristics such as size, shape, and color
(Schachter and Shopen 1985; Frawley 1992; Smith and Mark
2003; Bromhead 2017; Si 2017).

An alternative possibility is that all or some of the cortical
areas preferentially responding more to verbs than nouns, or vice
versa, are not sensitive to lexicosemantic distinctions at all—or
at least not more to distinctions within their preferred gram-
matical class. This could occur, for example, if responses to one
grammatical class over the other reflect different processing
demands imposed by verbs and nouns in a particular task. For
instance, a region involved in morphological processing might
respond more to verbs than nouns since, at least in English,
verbs have a richer morphology (Tyler et al. 2001, 2003, 2004,
2008). Analogously, brain regions generally involved in retrieval
of lexical information from long-term memory might respond
more to verbs than nouns because verbs tend to have more var-
iable or context-dependent meanings, making a single meaning
more difficult to retrieve from memory (Gentner 1981; Tyler
et al. 2001, 2004; Thompson-Schill et al. 1997, 1998, 2005). We
might expect such a region to show larger responses to verbs
on average but not to distinguish among lexicosemantic verb
types more than among noun types.

The goal of the current study was to ask whether verb-
responsive and noun-responsive cortical areas are preferen-
tially involved in representing the lexicosemantic distinctions
among members of their preferred grammatical class. To this
end, we probed the informational content represented within
verb- and noun-responsive cortical areas using multivoxel pat-
tern analysis (MVPA). Specifically, we tested the prediction that
verb-responsive cortical areas (i.e., the LMTG+) are more sensi-
tive to lexicosemantic distinctions among verbs than nouns,
whereas noun-responsive areas, including the inferior parietal
cortex (IP), precuneus (PC), and inferior temporal cortex (IT),
preferentially distinguish among nouns. As MVPA measures
the spatial population code within a cortical area, this method
is more sensitive than univariate analysis to the distinctions
within broad stimulus categories (e.g., among verbs) and is
thus specifically suited to address the current question (Haxby
et al. 2001). Our approach here is analogous to the complemen-
tary use of univariate and MVPA analyses in the study of object
recognition: while univariate methods identify regions within
the ventral stream that are especially responsive to different
stimulus categories (e.g., faces vs. places), MVPA shows that
these regions contain neural population codes that distinguish
among subtypes within these broad categories (e.g., forests vs.
buildings within places, among faces of different identity;
Walther et al. 2009, 2011; Anzellotti and Caramazza 2017;
Kumar et al. 2017; Watson et al. 2014, 2017). Analogously, we
hypothesized that verb- and noun-responsive regions would be
more sensitive to differences among lexicosemantic subcate-
gories of verbs and nouns, respectively.
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Several prior studies have shown that the spatial patterns of
activation within temporal, parietal, and prefrontal cortices, as
measured by MVPA, are sensitive to lexicosemantic distinctions
among words. Most studies thus far have focused on distinc-
tions among entity nouns (Simanova et al. 2012; Fairhall and
Caramazza 2013; Wang et al. 2013; Correia et al. 2014). For
example, Fairhall and Caramazza (2013) showed that regions
within the left temporal lobe, including the IP, PC, and IT, are
sensitive to distinctions among nouns referring to fruit, tools,
clothes, mammals, and birds (see also Simanova et al. 2012 and
Kumar et al. 2017 for similar design with place nouns). As for
verbs, one study found that in the angular gyrus (AG) the pat-
terns of activation for 2-word phrases were more similar when
these phrases shared the same verb (Boylan et al. 2015).
Another recent study found that frontotemporal patterns of
activation across action-verbs and object-nouns are correlated
with semantic similarity structure, as measured by latent
semantic analysis (Carota et al. 2017). However, whether corti-
cal areas that preferentially respond to verbs as opposed to
nouns, and vice versa, show sensitivity to lexicosemantic infor-
mation and whether they do so differentially across grammati-
cal classes has not yet been tested.

To answer this question, we first localized a set of brain
regions that have previously been shown to respond more to
verbs (LMTG+ and LIFG) and more to nouns (LIP, LPC, LIT) in
each individual participant using a previously established loca-
lizer paradigm that compares univariate responses to verbs
and nouns in a semantic similarity judgment task (Bedny,
Caramazza, et al. 2008; Bedny, McGill, et al. 2008, 2014). Then,
we tested whether the spatial patterns of activation within
verb- and noun-responsive regions are more similar for verbs
and nouns belonging to the same as opposed to different lexi-
cosemantic categories—for instance, hand-action verbs (e.g.,
“to prod” and “to stroke”) should be more similar to each other
than to light emission verbs (e.g., “to glow” and “to sparkle”).

Verb and noun stimuli were chosen from 2 broad lexicose-
mantic categories (verbs: actions vs. emission; nouns: animals
vs. places), each including 2 narrower subcategories (action
verbs: mouth actions, e.g., “to chew,” and hands actions, e.g.,
“to stroke;” emission verbs: sound, e.g., “to clang,” and light,
e.g., “to sparkle;” animal nouns: birds, e.g., “the sparrow,” and
mammals, e.g., “the fox;” place nouns: manmade, e.g., “the
igloo” and natural, e.g., “the meadow”). A secondary question
of interest was whether verb- and noun-responsive regions
would be sensitive to broad lexicosemantic distinctions only
(e.g., action vs. emission) or also to the narrow subcategories
(e.g., hand vs. mouth actions). We might expect that cortical
areas that are sensitive to lexicosemantic information should
show more pronounced distinctions for the broader classes but
should also distinguish between the fine-grained lexicoseman-
tic categories.

Materials and Methods
Participants

Thirteen individuals participated in the study (9 women, age
range 19–56, mean age = 34, SD = 10). All participants were
native English speakers with no history of neurological condi-
tions (screened through self-report). Informed consent was
obtained in accordance with the Johns Hopkins Medicine
Institutional Review Boards.

Stimuli

Word stimuli consisted of 144 words, 18 words in each of the
following 8 lexicosemantic categories: light emission verbs
(e.g., “to glow”—henceforth, light verbs for brevity), sound
emission verbs (e.g., “to boom”—henceforth, sound verbs),
hand-related action verbs (e.g., “to stroke”—henceforth, hand
verbs), mouth-related action verbs (e.g., “to bite”—henceforth,
mouth verbs), bird nouns (e.g., “the sparrow”), mammal nouns
(e.g., “the deer”), manmade place nouns (e.g., “the dungeon”),
and natural place nouns (e.g., “the creek”). All verb stimuli
occurred in the infinitive and all noun stimuli were preceded by
the article “the”, to mark grammatical category (see Supplementary
Materials, Appendix 1 for a complete list of stimuli).

Words were matched across lexicosemantic categories in
syllable length based on the CMU Pronouncing Dictionary
(Weide 1998; one-way ANOVA with 8 lexicosemantic categories
(bird, mammal, manmade pl., natural pl., hand, mouth, light,
sound): F(7,136) = 0.38, P > 0.5) and on phonological neighborhood
size using N-Watch (Davis 2005; one-way ANOVA: F(7,130) = 1.28,
P > 0.1). Words were also matched in familiarity based on rat-
ings collected using Amazon Mechanical Turk (AMT; repeated
measures ANOVA: F(7,98) = 1.17, P > 0.1; see Supplementary
Materials for details). Although familiarity and corpus fre-
quency are often correlated, some words have low corpus fre-
quency (especially in written corpora) while being highly
familiar (Tanaka-Ishii and Terada 2011). While the current sti-
muli were matched on familiarity, they were not matched on
frequency based on the Corpus of Contemporary American
English (COCA—Davies 2009; one-way ANOVA: F(7, 136) = 3.92,
P < 0.001). We choose to match our stimuli on judged familiarity
rather than corpus frequency because familiarity has been
shown to be a better psycholinguistic predictor of performance
(Gernsbacher 1984; Kreuz 1987; Connine et al. 1990). Finally,
based on AMT ratings (details in Supplementary Materials),
words were also matched on concreteness (repeated measures
ANOVA: F(7,98) = 0.91, P > 0.5) although, consistently with prior
reports, nouns were more imageable than verbs (paired t-test(14) =
−4.05, P < 0.005) and, among nouns, animals were more image-
able than places (paired t-test t(14) = 2.91, P < 0.05). For a complete
summary of word properties see Supplementary Table S1.

We quantified the overall semantic distance among nouns
and among verbs by collecting semantic similarity judgments
for all possible pairs within grammatical class on AMT (see
Supplementary Materials and Supplementary Fig. S1 for
details). Notably, verbs and nouns did not differ in their seman-
tic distance within grammatical class (2-tailed t-test comparing
verb- and noun-pairs similarity: t(9) = 0.34, P > 0.5). For the verb
stimuli, we also quantified the similarity across verb subcate-
gories according to semantic frames, syntactic frames and
argument roles based on VerbNet (Schuler 2005; Kipper et al.
2006; see Supplementary Materials and Supplementary Fig. S2
for details).

Procedure

Participants heard pairs of words and judged how related in
meaning they were on a scale from 1 “not at all similar” to 4
“very similar.” Words from each category were divided into 2
nonoverlapping sets (9 words per category per set) to be used
separately in even/odd runs. Within each set, we generated all
possible within category pairs (36 pairs per category per set).
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Word pairs were presented in blocks of 4. All blocks contained
only words from a single lexicosemantic category and each
word occurred only once per block (e.g., light verbs block: “to
shine—to glisten,” “to flash—to gleam,” “to twinkle—to glare,”
“to glimmer—to blaze”). Blocks were 16 s long, separated by 10 s
of rest. Each trial within a block was 4 s long, including 2 words
(0.9 s each), an interword interval (0.25 s) and the response
period (1.95 s).

There was a total of 144 blocks (18 per word category)
divided evenly into 8 runs. Blocks in even/odd runs contained
stimuli exclusively from 1 of the 2 sets, ensuring that words
were not repeated across even/odd runs (e.g., “to flash”
occurred only in even runs). Word pairs, blocks and runs were
presented in 1 of 2 pseudorandom orders, counterbalanced
across participants. For every run, each word category was dis-
tributed evenly throughout the run to minimize position
effects.

A female native English speaker recorded the word stimuli.
The audio files were normalized to each other in volume with
respect to root-mean square (RMS) amplitude and adjusted to
have equal durations (0.9 s). The stimuli were presented over
MRI-compatible earphones at the maximum comfortable vol-
ume for each participant. Participants indicated their responses
by using an MRI-compatible button pad. Because data from the
current participants were also used as a control group for a sep-
arate study with blind individuals, participants wore a light
exclusion blindfold throughout the experiment.

fMRI Data Acquisition

MRI structural and functional data of the whole brain were col-
lected on a 3 T Phillips scanner using a 32-channel head coil.
T1-weighted 3D-MPRAGE structural images were collected
using a pulse sequence in 170 sagittal slices with 1mm isotro-
pic voxels (TE/TR = 7.0/3.2ms, FoV = 240 × 240mm2, 288 × 272
acquisition matrix, scan duration = 5:59′). Functional BOLD
images were collected using parallel transverse ascending echo
planar imaging (EPI) sequences in 36 axial slices with 2.5 × 2.5 ×
2.5mm3 voxels (TE/TR = 30/2000ms, FoV = 192 × 172mm2, 76 ×
66 acquisition matrix, 0.5mm gap, flip angle = 70°, scan dura-
tion = 8:04′).

fMRI Data Analysis

Preprocessing
Data analyses were performed using FSL, Freesurfer, the
Human Connectome Project workbench, and custom software
(Dale et al., 1999; Smith et al. 2004; Glasser et al. 2013).
Functional data were corrected for subject motion using FSL’s
MCFLIRT algorithm (Jenkinson et al. 2002), high pass filtered to
remove signal fluctuations at frequencies longer than 128 s/
cycle, and then resampled to a cortical surface model and
smoothed with a 2mm FWHM Gaussian kernel to regularize
the data on the cortical surface. All subsequent analyses were
surface-based. Subject-specific cortical surface models were
generated using the automated Freesurfer pipeline and visually
inspected to assure accuracy.

Whole-Brain Univariate Analysis
The functional data were spatially smoothed on the cortical
surface with a 6mm FWHM Gaussian kernel and prewhitened
to remove temporal autocorrelation. Each of the verb and noun
categories were entered as a separate predictor in a general lin-
ear model (GLM) after convolving with a canonical

hemodynamic response function. We also included the first
temporal derivative as a covariate of no interest, to correct for
small differences between the predicted and actual start of the
hemodynamic response (Calhoun et al. 2004). Each run was
modeled separately, and runs were combined within subject
using a fixed-effects model. Group-level random-effects analy-
ses were corrected for multiple comparisons at vertex level
with P < 0.05 threshold false discovery rate (FDR) across the
whole cortex (Genovese et al. 2002). Additionally, a nonpara-
metric permutation test was used to cluster-correct at P < 0.01
family-wise error rate (FWER).

ROIs Definition
We defined individual subject functional ROIs to be used in the
MVPA analysis. For each subject, we defined 2 verb-responsive
ROIs and 4 noun-responsive ROIs (verb ROIs: LMTG extending
into the superior temporal gyrus [STG] and into the most infe-
rior aspect of the anterior parietal cortex [LMTG+], the LIFG;
noun ROIs: left inferior parietal cortex [LIP], left inferior tempo-
ral cortex, both laterally [LlatIT] and medially [LmedIT], and left
precuneus [PC]). These anatomical regions were chosen
because they have been observed to respond preferentially to
verbs or nouns in previous studies and showed verb/noun pre-
ferences in the univariate analysis in the current study
(Crepaldi et al. 2013 for a review).

We employed a 2-step procedure to identify subject-specific
functional ROIs. First, whole-brain results for the Verbs >
Nouns contrast were used to identify group search spaces in
the anatomical location of LMTG+, LIFG, LPC, LlatIT, and
LmedIT. Next individual functional ROIs were defined for each
subject by taking the top 300 active vertices for the Verbs >
Nouns and Nouns > Verbs contrasts, for verb-responsive and
noun-responsive ROIs, respectively. Note that although the
focus of the current paper was on MVPA patterns within these
ROIs, we also report the univariate signal for each verb/noun cat-
egory in the Supplementary Materials (see also Supplementary
Fig. S3).

MVPA ROI Analysis
MVPA was used to test whether verb- and noun-responsive
regions are more sensitive to lexicosemantic differences among
verbs and among nouns, respectively, using PyMVPA toolbox
(Hanke et al. 2009). For each ROI in each participant, a linear
support vector machine (SVM) classifier was used to separately
decode among the 4 verb categories and among the 4 noun cat-
egories. In each vertex in each participant’s ROIs, we obtained
one sample labeled by lexicosemantic category per block by
averaging BOLD signal across time points over a block duration
(16 s). Time points for each block were defined as block onset
plus 4 s delay to account for the hemodynamic lag. Each ver-
tex’s block sample was then normalized (z-scored) with respect
to the mean signal for the vertex across the task blocks during
a given run, such that the mean of each vertex across the run
was set to 0 and standard deviation to 1. Normalization was
applied to data from verbs and nouns separately, removing dif-
ferences in mean signal across grammatical class. The classifier
was then trained on half of the data (e.g., even runs) and tested
on the other half (e.g., odd runs). Classification accuracy was
then averaged across the 2 training/test splits. Importantly,
individual verbs and nouns did not repeat across even and odd
runs. Thus, the classifier was trained on one subset of words
and tested on a different subset.
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We compared classifier performance within each ROI to
chance (25%) and across verbs and nouns. We also tested for an
interaction between grammatical class (verbs vs. nouns) and
ROI. Significance was evaluated against an empirically gener-
ated null distribution using a combined permutation and boot-
strap approach (Schreiber and Krekelberg 2013; Stelzer et al.
2013). In this approach, t- and F-statistics obtained for the
observed data are compared against an empirically generated
null distribution. We report the t- and F-values obtained for the
observed data and the nonparametric P-values, where P corre-
sponds to the proportion of the shuffled analyses that gener-
ated a comparable or higher t/F value. Tests comparing 2
conditions (viz., accuracy for verbs and accuracy for nouns)
used 2-tailed tests. One-tailed tests were used to test classifier’s
accuracy against chance.

The null distribution was generated using a balanced block
permutation test by shuffling the block labels within run 1000
times for each subject (Schreiber and Krekelberg 2013). Then, a
bootstrapping procedure was used to generate an empirical
null distribution for each statistical test across participants by
sampling one permuted accuracy value from each participant’s
null distribution 15 000 times (with replacement) and running
each statistical test on these permuted samples, thus generat-
ing a null distribution of 15 000 statistical values for each test
(Stelzer et al. 2013).

Confusion matrices were generated to describe how well
the classifier performed on each pairwise distinction among
verbs and nouns (e.g., manmade places vs. natural places). For
any pair of categories or subcategories, the confusion matrix
yields 2 measures of classification performance: the percent-
age of correctly classified trials, or hit rate (H), and the per-
centage of misclassified trials, or false alarm rate (F; Haxby
et al. 2014). Classification and misclassification frequencies
can be compared using a signal detection theory framework
(Swets et al. 1961; Green and Swets 1966). Within each ROI, we
computed A′, a nonparametric estimate of discriminability
( ′ = + ( − )( + − )

( − )
A H F H F

H F
1
2

1
4 1

; Pollack and Norman 1964; Grier 1971;
Stanislaw and Todorov 1999), to assess the classifier’s ability
to distinguish 1) between “major” lexicosemantic categories
(i.e., animal vs. place nouns, action vs. emission verbs) and 2)
between the lexicosemantic subcategories (i.e., birds vs. mam-
mals, manmade vs. natural places; mouth vs. hand actions,
sound vs. light emission verbs). An A′ of 0.5 corresponds to
chance performance, while 1.0 indicates perfect discriminabil-
ity. Paired student t-tests were used to compare A′ values to
chance performance. Finally, to test whether the classifier was
more likely to confuse words within than across major seman-
tic categories, we used paired Student t-tests to compare the
number of errors made by the classifier within a major subcat-
egory (e.g., hand verbs mistaken for mouth verbs) and across a
major subcategory (e.g., hand verbs mistaken for light or
sound emission verbs).

Whole-Brain Searchlight MVPA Analysis
A whole-brain SVM classifier was used to decode indepen-
dently among verbs and among nouns over the whole cortex
using a 6mm radius circular searchlight (according to geodesic
distance, to better respect cortical anatomy over Euclidean dis-
tance; Glasser et al. 2013). This yielded for each participant 2
classification maps (1 for verbs and 1 for nouns) indicating the
classifier’s accuracy in a neighborhood surrounding every ver-
tex. Individual subject searchlight accuracy maps were aver-
aged, and this group-wise map was thresholded using PyMVPA

implementation of the 2-step cluster-thresholding procedure
described in Stelzer et al. (2013) (Hanke et al. 2009). This proce-
dure permutes block labels within participant to generate a
null distribution within subject (100 times) and then samples
from these (10 000) to generate a group-wise null distribution
(as in the ROI analysis.) The whole-brain searchlight maps are
then thresholded using a combination of vertex-wise threshold
(P < 0.001 uncorrected) and cluster size threshold (FWER P <
0.05, corrected for multiple comparisons across the entire corti-
cal surface).

Results
Behavioral Results

There was no difference in the semantic similarity of verbs and
the semantic similarity of nouns as rated by the fMRI partici-
pants (verbs: mean = 2.08, SD = 0.55; nouns: mean = 2.03, SD =
0.47; paired t-test t(12) = 0.76, P > 0.1). Among verbs, light verbs
were judged to be more similar than any other verb category
(light mean = 2.74, SD = 0.6, sound mean = 1.8, SD = 0.29, hand
mean = 1.86; SD = 0.31; mouth: mean = 1.9, SD = 0.26, repeated
measures ANOVA F(3,36) = 43.15, P < 0.001). Among nouns, man-
made places were judged to be less similar than the other cate-
gories (birds mean = 2.28, SD = 0.52, mammals mean = 2.19, SD =
0.44, manmade places mean = 1.6, SD = 0.13, natural places
mean = 2.05, SD = 0.39, repeated measures ANOVA F(3,36) = 17.68,
P < 0.001). These results closely resemble those obtained on AMT
(see Supplementary Fig. S1). Participants’ reaction times (RTs)
were not different for verbs and nouns (verbs mean = 1.57 s, SD =
0.17; nouns mean = 1.59 s, SD = 0.18; paired t-test t(12) = 1.45, P >
0.1). Among verbs, responses were slower for hand verbs than for
other verbs (light mean = 1.57 s, SD = 0.21, sound mean = 1.58 s,
SD = 0.16, hand mean = 1.61 s; SD = 0.17; mouth: mean = 1.52 s,
SD = 0.16, repeated measures ANOVA F(3,36) = 3.69, P < 0.05).
Among nouns, responses were slower for birds and natural
places than for mammals and manmade places (birds mean =
1.60 s, SD = 0.22, mammals mean = 1.56 s, SD = 0.17, manmade
places mean = 1.57 s, SD = 0.16, natural places mean = 1.64 s,
SD = 0.19, repeated measures ANOVA F(3,36) = 3.61, P < 0.05).

To ascertain whether verb and noun categories could not be
distinguished amongst themselves (i.e., among verbs and
among nouns) based on differences in RTs, we trained 2 linear
SVMs classifiers on the in-scanner RTs. One classifier was
trained to distinguish among verbs, the other among of nouns,
analogously to the classification of the fMRI data. The training/
testing cross-validation split followed the even/odd run divi-
sion of the fMRI design (i.e., training on word sets from odd
runs and testing on word sets from even runs, and vice versa).
Neither verb nor noun lexicosemantic categories could be clas-
sified based on in-scanner RTs (see Supplementary Materials
for further details on the classification analyses). Thus, classifi-
cation among verbs and among nouns based on the fMRI data
is unlikely to be due to RTs differences.

fMRI Results

Verb and Noun Preferring Cortical Networks Identified in Univariate
Mean Signal
Group maps comparing the activation for verbs and nouns (P <
0.01 FWER) are shown in Figure 1A (see Supplementary
Tables S2 and S3 for a complete list of activation peaks).
Greater activation for verbs than for nouns was found bilater-
ally in the MTG+ and superior temporal sulcus (STS), extending
in the left hemisphere into the STG, in the posterior aspect of
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the left IFG (pars triangularis) and bilaterally in occipital corti-
ces (lateral, fusiform and lingual gyri). Activity was greater for
nouns than verbs bilaterally in the IP and the PC/medial cingu-
late, in left medial inferior temporal cortex (LmedIT, parahippo-
campal and anterior-medial fusiform gyri), as well as lateral IT
(LlatIT) and subregions of the superior and middle frontal gyri.
Overall, responses to both nouns and verbs were larger in the
left hemisphere.

MVPA Distinctions Among Verb and Among Noun Types Within
Verb- and Noun-Responsive ROIs
Classification was tested within 2 verb-responsive (LMTG+ and
LIFG) and 4 noun-responsive (LIP, LPC, LmedIT, and LlatIT) ROIs

within the left hemisphere. The classifier performance for both
verbs and nouns was significantly above chance (25%) in all
ROIs (all Ps < 0.05, Fig. 2; see Supplementary Table S4 for
details). When classification was compared across ROIs
(repeated measures ANOVA), we observed a grammatical class
(verbs, nouns) by ROI (LMTG+, LIFG, LIP, LPC, LlatIT, LmedIT)
interaction (F(5,60) = 7.06, permuted P < 0.0001), a main effect of
ROI (F(5,60) = 3.29, permuted P < 0.05), and a main effect of gram-
matical class (F(1,12) = 6.03, permuted P < 0.05; Fig. 2). The LMTG+
was more sensitive to lexicosemantic distinctions among verbs
than nouns (nouns vs. verbs paired t-test t(12) = −2.11, permuted
P < 0.01), whereas all noun-responsive regions (LIP, LPC, LlatIT,
and LmedIT) were more sensitive to lexicosemantic distinctions
among nouns than verbs (nouns vs. verbs paired-t-tests, LIP t(12) =
2.67, permuted P < 0.05; LPC: t(12) = 2.65, permuted P < 0.05; LlatIT
t(12) = 3.51, permuted P < 0.005; LmedIT: t(12) = 2.85, permuted P <
0.05). By contrast, verbs and nouns were equally decodable in the
LIFG (t(12) = 1.12, permuted P > 0.1). When the 2 verb-responsive
ROIs (LMTG+ and LIFG) were compared directly to each other, we
observed a significant difference in the grammatical class effect
across them (repeated measures ANOVA with grammatical class
(verbs, nouns) by ROI (LMTG+, LIFG): interaction F(1,12) = 4.96, per-
muted P < 0.0005), but no main effects of either ROIs or grammat-
ical class.

Then, we inspected each ROI’s confusion matrices to deter-
mine whether the classifier was able to discriminate only
between major lexicosemantic categories or also between
minor subcategories, as well as to determine whether errors
were more likely within than across major lexicosemantic cate-
gories. Figure 3A shows the confusion matrices from the LMTG
+, LIFG and the average of the noun-responsive ROIs with the
classifier’s errors for mirroring misclassifications averaged
across the diagonal (e.g., when the classifier confused hand
verbs for mouth verbs, and mouth verbs for hand verbs; see
Supplementary Fig. S4 for the complete confusion matrices in
all ROIs). In the verb-responsive LMTG+, the classifier success-
fully discriminated between the major verb lexicosemantic cat-
egories of action and emission verbs (A′ = 0.67, t(12) = 4.46, P <
0.0001), as well as between the minor subcategories (mouth vs.
hand actions A′ = 0.64, t(12) = 2.43, P < 0.05; sound vs. light emis-
sion A′ = 0.59, t(12) = 1.63, trending with P = 0.07). As for the
errors, there was a trend for the classifier to more frequently

Figure 1. (A) whole-brain group maps, P < 0.01 FWER. Red: verbs, blue: nouns. (B)

MVPA searchlight group maps, vertex-wise accuracy significance P < 0.001, cluster-

thresholded FWER P < 0.05. Red: verbs, blue: nouns, purple: verbs/nouns overlap.

Figure 2. Group search spaces used to define individual subject functional ROIs in the left hemisphere. Classifier accuracy in verb (LIFG and LMTG) and noun (LIP, LPC,

LlatIT and LmedIT) selective regions. Chance: 25%. Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “” 1.
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improperly categorize verbs within a major lexicosemantic cat-
egory (e.g., hand verbs mistaken for mouth verbs) than across
major lexicosemantic categories (e.g., hand verbs mistaken for
either light or sound emission verbs; number of errors: within
mean = 4.56, SD = 1.57; across mean = 3.49, SD = 0.93; paired
t-test t(12) = −1.86, P > 0.05).

In the verb-responsive LIFG, the only significant discrimina-
tion among verbs was between sound and light emission verbs
(A′ = 0.66, t(12) = 3.5, P < 0.01). The classifier also successfully
discriminated between the major, but not the minor, noun lexi-
cosemantic categories in both verb-responsive regions (LMTG+:
A′ = 0.61, t(12) = 2.45, P < 0.05; LIFG: A′ = 0.64, t(12) = 2.79, P <
0.005). Unlike in the LMTG+, in the LIFG the classifier was
equally likely to make errors within and across major lexciose-
mantic categories (number of errors: within mean = 3.98, SD =
0.92; across mean = 4.35, SD = 0.6; paired t-test t(12) = 0.98, P >
0.1; repeated measures ANOVA with 2 ROI (LMTG+, IFG) by
ErrorType (within, across): interaction F(1,12) = 5.03, P < 0.05).

In all the noun-responsive regions (LIP, LPC, LlatIT, and
LmedIT), the classifier successfully discriminated between the
major noun lexicosemantic categories of animals and places
(LIP: A′ = 0.80, t(12) = 11.74, P < 0.0001; LPC: A′ = 0.72, t(12) = 4.2,
P < 0.0001; LlatIT: A′ = 0.75, t(12) = 7.76, P < 0.0001; LmedIT: A′ =
0.82, t(12) = 15.06, P < 0.0001). Manmade and natural places were
discriminated above chance in all but one noun-responsive ROI

(LIP: A′ = 0.72, t(12) = 4.97, P < 0.0005; LPC: A′ = 0.68, t(12) = 3.51,
P < 0.005; LlatIT: A′ = 0.71, t(12) = 4.8, P < 0.0005, LmedIT: A′ =
0.54; t(12) = 0.99, P > 0.1). By contrast, birds and mammals were
not distinguishable in any ROI (LIP: A′ = 0.49, t(12) = −0.22, P >
0.5; LPC: A′ = 0.51, t(12) = 0.09, P > 0.1; LlatIT: A′ = 0.52, t(12) =
0.38, P > 0.1, LmedIT: A′ = 0.54; t(12) = 0.75, P > 0.1). Additionally,
we checked whether the A′ results observed in the noun-
responsive ROIs were consistent with the ones one would
predict based on the noun semantic similarity judgments. We
find that they are not (see Supplementary Materials and
Supplementary Figs S5 and S6). As for the errors, in all the
noun-responsive ROIs except for the LPC, the classifier more
often miscategorized nouns within a major category (e.g., bird
mistaken for mammal) than across major categories (e.g., bird
mistaken for either manmade or natural places; all Ps < 0.01;
see Supplementary Table S5 for details).

In 2 of the 4 noun-responsive regions, the classifier also dis-
criminated between the major verb lexicosemantic categories
(LIP: A′ = 0.62, t(12) = 4.08, P < 0.0005; trending in LPC: A′ = 0.55,
t(12) = 1.52, P > 0.05; LlatIT: A′ = 0.59; t(12) = 3.1, P < 0.001,
LmedIT: A′ = 0.55, t(12) = 1.25, P > 0.1). In the LIP, the classifier
also discriminated successfully between mouth and hand verbs
(A′ = 0.61; t(12) = 2.2, P < 0.05), and sound and light emission
verbs (A′ = 0.62; t(12) = 1.81, P < 0.05). In the LPC, the classifier
successfully distinguished between light and sound emission

Figure 3. Confusion matrices for LMTG+, LIF and the average of the noun-responsive ROIs providing the percentage of predicted correct classifications (diagonals) and

misclassifications (off diagonals). The confusion matrices show the classifier’s errors for mirroring misclassifications averaged across the diagonal.
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verbs (A′ = 0.63; t(12) = 1.94, P < 0.05). No other classifications
were above chance.

Correlations Between LMTG+ Neural Confusion Matrix, Semantic
Similarity Judgments and VerbNet Frames
We correlated the group average LMTG+ neural confusion
matrix to the verb similarity matrices derived from VerbNet
(syntactic frames, argument roles, and semantic frames) as
well as to the semantic similarity matrix based on the AMT rat-
ings (Fig. 3b). As the confusion matrix is not symmetric, to cor-
relate it with the similarity matrices we used the average of the
classifier’s errors for mirroring misclassifications.

There was a high correspondence between the LMTG+ neu-
ral confusion matrix and the verb semantic similarity matrix
(Pearson’s r2 = 0.83, P < 0.0005). Correspondence with VerbNet
frames was also high (VerbNet semantic frames: r2 = 0.54, P <
0.05; VerbNet syntactic frames: r2 = 0.46, P < 0.05; VerbNet argu-
ment roles: r2 = 0.45, P < 0.05; unpaired t-tests comparing
Fisher-Z transformed r values: all Ps > 0.1). Since the semantic
and grammatical matrices are highly correlated to each other
(semantic similarity – semantic frames: r2 = 0.78 P < 0.001;
semantic similarity – syntactic frames: r2 = 0.61 P < 0.005;
semantic similarity – argument roles: r2 = 0.55 P < 0.05; seman-
tic frames – syntactic frame: r2 = 0.85 P < 0.0005; semantic
frames – argument roles: r2 = 0.78 P < 0.001; syntactic frame –

argument roles: r2 = 0.98 P < 0.0001), it was impossible to statis-
tically separate their effects.

MVPA Searchlight Results
Classification among verbs was significantly better than chance
in the posterior LMTG+, although the searchlight classification
peak was somewhat posterior and superior to the Verbs >
Nouns peak observed in the univariate analysis (Fig. 1B). Verb
classification was also above chance in LlatIT, as well as the
posterior and superior LIP (peak in the interparietal sulcus).
Classification among nouns was significantly better than
chance in LIP (peak near the angular gyrus), LmedIT and LlatIT
(an anterior and a posterior region), bilaterally in the PC, as
well as in the LIFG. Consistent with the univariate analysis and
the ROI results, the verb- and noun-responsive networks
showed some overlap, but each had a distinctive neuroanatom-
ical distribution.

Discussion
Consistent with the idea that verb- and noun-responsive
regions are involved in representing lexicosemantic informa-
tion, we find that the spatial patterns of activity within these
areas are sensitive to lexicosemantic distinctions among nouns
and verbs. Furthermore, we observe a double dissociation in
the sensitivity of spatial patterns of activation to different lexi-
cal types across verb (LMTG+) and noun-responsive (LIP, LPC,
LlatIT, and LmedIT) regions. These findings are consistent with
the hypothesis that the lexicosemantic properties of verbs and
nouns are represented in partially nonoverlapping neural
systems.

The LMTG+ but not the LIFG is Preferentially Sensitive
to the Lexicosemantics of Verbs

Consistent with prior evidence, we found that a region within
the LMTG+ and a region within the LIFG respond more to verbs
than nouns (Martin et al. 1995; Fujimaki et al. 1999; Perani et al.
1999; Davis et al. 2004; Li et al. 2004; Kable et al. 2002, 2005;

Tranel et al. 2005; Bedny and Thompson-Schill 2006; Thompson
et al. 2007; Liljeström et al. 2008; Tyler et al. 2003, 2008; Yu et al.
2011, 2012; Bedny, Caramazza, et al. 2008; Bedny, McGill, et al.
2008, 2011, 2014). However, only the verb-responsive LMTG+
was more sensitive to lexicosemantic distinctions among verbs
than among nouns. Moreover, the neural confusion matrix of
the LMTG+ was correlated with semantic similarity of verbs as
measured by participant ratings outside the scanner and with
VerbNet lexicosemantic and grammatical similarity.

This result is consistent with previous findings suggesting that
the LIFG is not preferentially involved in representing lexicoseman-
tic information associated with verbs (Cappelletti et al. 2008;
Shapiro et al. 2012). Instead, LIFG may support general cognitive
control functions that are particularly relevant to verb retrieval,
such as selection among multiple alternatives (Thompson-Schill
et al. 2005; Hoffman et al. 2015). Verbs tend to be more semantically
malleable and influenced by the sentence context than object
nouns, potentially increasing the demand for selection among pos-
sible alternative meanings, and the LIFG is sensitive to this property
of words, that is, their semantic ambiguity (Gentner 1981;
Thompson-Schill et al. 1997, 1999; Rodd et al. 2005; Bedny et al.
2007; Bedny, Caramazza, et al. 2008; Bedny, McGill, et al. 2008;
Grindrod et al. 2008). Alternatively, the LIFG might contribute to
morphosyntactic processing of verbs, since in English verbs have a
richer morphology than nouns (Tyler et al. 2001, 2004). It is also
possible that verb-responsive LIFG is involved in integrating verbs
into a sentence frame. Since in the current study verbs and nouns
were presented in isolation, greater differences between verbs and
nouns might emerge when verbs and nouns are processed with a
sentence context (Snijders et al. 2008; Zhu et al. 2012; Hagoort 2013).

By contrast, previous studies suggest that LMTG+ responses
are not driven purely by grammatical factors. In particular, the
LMTG+ responds not only to verbs but also to nouns that are
similar in meaning to verbs, namely event nouns (e.g., “the
hurricane,” “the rodeo”) (Bedny et al. 2014). The grammatical
behavior of event nouns within sentences and their morpho-
syntactic properties are akin to those of object nouns (“the con-
cert” but not “concerting”). Semantically, however, event nouns
resemble verbs in that their referents are situated in time, in
addition to space (e.g., “during the concert”) (Langacker 1987,
2008). The LMTG+ response to event nouns is intermediate
between its response to object nouns and verbs (Collina et al.
2001; Tabossi et al. 2010; Garbin et al. 2012; Bedny et al. 2014;
Lapinskaya et al. 2016). Some previous studies also suggest that
the LMTG+ responds more to tool nouns than nouns referring
to animals, possibly due to their association with actions (Hauk
et al. 2008; Desai et al. 2009; Pillon and d’Honincthun 2011;
Vannuscorps and Pillon 2011; Fernandino et al. 2015). However,
responses to tools tend to be more posterior and inferior to
those observed for verbs (Bedny and Caramazza 2011; Perini
et al. 2014). These findings raise the possibility that the LMTG+
stores representations of lexicalized events and actions, includ-
ing verbs and event nouns (Martin et al., 1995, Kable et al., 2002,
Bedny, Caramazza, et al. 2008; Bedny, McGill, et al. 2008).

A nonmutually exclusive possibility is that the LMTG+
represents aspects of verb grammar that are intimately related
to meaning, namely, the type and number of grammatical
arguments that a verb takes when used in a sentence. As noted
in the introduction, verbs denote events with specific numbers
and types of participants (e.g., “give” entails a giver and a
receiver) and tend to have a corresponding number of gram-
matical arguments. Children and adults are sensitive to this
syntactic-semantic correspondence during verb acquisition and
during comprehension (Gillette et al. 1999; Trueswell et al.
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1999). Nevertheless, while argument structure is systematically
related to verb meaning, it is a grammatical property distinct
from it. Verbs with similar meanings can take different num-
bers of arguments (e.g., “to eat” vs. “to devour”; Chomsky 1981;
Gleitman 1990; Jackendoff 1992; Levin and Hovav 1995; Pinker
1989; Tanenhaus et al. 1989, inter alia). LMTG+ could be
sensitive to this aspect of verb grammar.

Consistent with this possibility, previous studies suggest
that the LMTG+ is sensitive to argument number (i.e., transitiv-
ity) and responds more to 2-argument than one-argument
verbs (Thompson et al. 2007; Hernández et al. 2014). In the cur-
rent study, some of the verb types decoded in the LMTG+ differ
in number of arguments: the action verbs were for the most
part divalent, whereas the emission verbs were all monovalent.
For example, the verb “to lick” requires 2 arguments, the agent
doing the licking and the object being licked (e.g., “the dog
licked the bone”), while emission verbs such as “to sparkle”
only require one (e.g., “the diamond sparkled”) (Levin 1993;
Levin and Hovav 1995). However, patterns of activity in the
LMTG+ also distinguished among verb types that take the same
number of arguments, that is, emission verbs, which differ in
the substance being emitted (light vs. sound, e.g., “to glow” vs.
“to boom”). The present results are therefore consistent with
the idea that the LMTG+ represents either grammatical infor-
mation related to verb meaning, semantic information associ-
ated with verbs or both of these types of information.

Many further questions remain open regarding LMTG+’s con-
tribution to lexicosemantic representations and processing. In
future work, it will be important to uncover the specific lexicose-
mantic dimensions that are represented in the LMTG+. Candidate
dimensions include whether the verb refers to a state or an event
(e.g., “to contain” vs. “to boil”), whether it describes an event that
has a definite ending (i.e., telicity, e.g., “to run” vs. “to build”) or
presupposes an event to be true (i.e., factivity, e.g., “she knew that
John had left” vs. “she assumed that John had left”), the agentivity
of the verb’s subject (animate/inanimate, e.g., “to run” vs. “to
sparkle”), the path of the denoted event (e.g., “enter” vs. “exit”) or
its manner (e.g., “to roll”, “to bounce”; Levin and Hovav 1995).
Others have suggested that the LMTG+ represents sensory-motor
dimensions such as the presence of visual motion and action-
relatedness (Bird et al. 2000; Kable et al. 2002; Vigliocco et al. 2006;
Hauk et al. 2008; Desai et al. 2009; Fernandino et al. 2015). Future
studies could use MVPA to uncover which of these dimensions
are explicitly coded by neural populations within the LMTG+
region. A further open question concerns the degree to which
verb-responsive LMTG+ is language specific. Previous studies sug-
gest that recognition and categorization of action images and
videos depends on distinct right-lateralized STS and MTG regions
(Vander Wyk et al. 2009; Pelphrey et al. 2004, 2005; Dravida et al.
2013; Kable et al. 2002). However, studies with matched verbal
and nonverbal stimuli are needed to resolve this question.
Finally, although the LMTG+ appears to contribute disproportion-
ately to representations of verbs and event nouns as opposed to
object nouns or concrete adjectives, its role in the representation
of other semantic content (e.g., abstract non-event nouns such as
“idea”) remains to be tested (Binder et al. 2005; Papagno et al.
2009; Wang et al. 2010; Hoffman et al. 2015).

Preferential Encoding of Object Nouns in LIP, LPC, and
LIT

The present results suggest that a network of cortical areas,
including the LIP, LPC, and LIT, contains spatial population codes
that distinguish preferentially among entity nouns than among

verbs. These cortical areas are similar to those identified by previ-
ous work as responding to nouns and being sensitive to distinc-
tions among them. For example, Kumar et al. (2017) showed that
patterns of activity in IP distinguish among different types of
places (beaches, cities, highways, and mountains). Analogously,
Fairhall and Caramazza (2013) found that a portion of lateral IT
extending into MTG+ and the PC are sensitive to differences
among mammals, birds, fruits, tools, and clothes. Interestingly,
prior research suggests that activity in these noun-responsive
areas is sensitive to object category not only when participants
are presented with words, but also when they are presented with
pictures of objects (Simanova et al. 2012; Devereux et al. 2013;
Fairhall and Caramazza 2013; Kumar et al. 2017). Furthermore,
classifiers trained on patterns of activity produced by object
nouns successfully decode among images of the same objects,
and vice versa (Simanova et al. 2012; Devereux et al. 2013; Fairhall
and Caramazza 2013; Kumar et al. 2017). Together with this prior
evidence, the present results are consistent with the hypothesis
that this network contributes to representing the semantics of
entities (Fujimaki et al. 1999; Li et al. 2004; Tyler et al. 2004; Bedny
and Thompson-Schill 2006; Marangolo et al. 2006; Shapiro et al.
2005, 2006; Thompson et al. 2007; Berlingeri et al. 2008; Liljeström
et al. 2008).

A potentially interesting pattern in the current data is that all
entity-responsive regions showed less sensitivity to distinctions
between mammals and birds than between manmade and natu-
ral places, as well as between places and animals. We success-
fully decoded animals from places, and manmade from natural
places. By contrast, the seemingly salient distinction between
mammals and birds did not lead to distinguishable patterns of
activity in these regions, even though subjects judged birds to be
more similar to other birds than to mammals and mammals to
be more similar to other mammals than to birds to the same
extent that they distinguished among places (see Supplementary
Figs S5 and S6 and Supplementary Materials for details). These
results are consistent with the idea that something other than
overall semantic similarity is driving better performance for
places than animals. Similarly, previous studies have found that
patterns of activity within PC and IP distinguish between animals
and inanimate objects (e.g., tools, places), as well as between
manmade and natural places (Akama et al. 2012; Simanova et al.
2012; Devereux et al. 2013; Fairhall and Caramazza 2013; Correia
et al. 2014; Kumar et al. 2017). We are, however, not aware of any
study showing classification among animal types in the entity-
responsive cortical areas or elsewhere when subjects are pre-
sented with verbal labels.

This could occur for several different reasons. The entity-
responsive regions identified in the current study may be spe-
cialized for representing particular subtypes of entities. For
instance, the medial IT region (LmeIT) is in a similar neuroana-
tomical location as the so called “parahippocampal place area”
(PPA). The PPA was originally found to be responsive to images
of scenes and thought to represent their spatial layout but has
subsequently been shown to respond also to haptically pre-
sented Lego scenes and words referring to places (Epstein and
Kanwisher 1998; Wolbers e al. 2011; Kumar et al. 2017). In the
current study, LmedIT responded more to names of places than
names of animals even in the univariate analysis and, like the
other noun-responsive areas, patterns of activity within the
medial IT distinguished among places but not among animals.
Notably, while the “visual” scene responsive PPA is typically
right lateralized (Epstein and Kanwisher 1998), in the current
study the strongest decoding pattern was in the left hemi-
sphere. Thus, an interesting possibility is that the left medial IT
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is particularly responsive to scene categories when accessed
through verbal stimuli.

In contrast to the medial IT, other regions identified in the
current study, such as the PC, did not respond more to names
of places than names of animals in the univariate signal.
Although the current study only included animal and place
nouns, previous studies have found that the PC as well as the
IP and the lateral IT respond to other noun types (e.g., names of
objects; Fujimaki et al. 1999; Li et al. 2004; Tyler et al. 2004;
Bedny and Thompson-Schill 2006; Marangolo et al. 2006;
Shapiro et al. 2005, 2006; Thompson et al. 2007; Berlingeri et al.
2008; Liljeström et al. 2008). Furthermore, previous research has
shown that activity patterns within these areas distinguish
among noun categories other than places (e.g., animals vs.
tools; Simanova et al. 2012, Fairhall and Caramazza 2013). The
available evidence thus suggests that some of the identified
noun-responsive cortical areas are involved in representing
entities more generally.

As for the verb-responsive cortical systems, a key goal for
future research is to uncover the distinctions among entities
that are coded in the noun-responsive network. One hypothesis
is that the neural code within entity-responsive IP and PC
reflects more robustly those semantic distinctions that are cog-
nitively primary: animate versus inanimate (e.g., animals vs.
places) and artifacts versus natural kinds (e.g., manmade places
vs. natural places; Gelman et al. 1983; Gelman and Markman
1986, 1987; Gelman 1988; Mandler et al. 1991; Bloom 1996;
Gelman and Bloom 2000). Children distinguish animate and
inanimate entities, as well as artifacts from natural kinds, early
in development and many languages mark animacy grammati-
cally, distinguishing between entities that can and cannot serve
as agents (Gelman et al. 1983; Mandler et al. 1991; Frawley 1992;
Bloom 1996; Medin et al. 2000; Diesendruck et al. 2003;
Bromhead 2017; Kemmerer 2017). Only animate entities engage
in volitional behavior and have mental states, whereas inani-
mate entities are characterized by their functions, shape, and
compositional material (Frawley 1992).

By contrast, the distinction between birds and mammals is
arguably less conceptually fundamental, although easily made.
Indeed, children and adults often reason about living things
based on knowledge of broad biological properties that are
common to the animal class, such as breathes, eats, is born,
sleeps, and dies (Carey 1985). It has also been suggested that
Western adults living in urban settings have sparse knowledge
about specific animal kinds (Medin and Atran 1999; Atran and
Medin 2008; Medin and Bang 2014). Animals are often distin-
guished by their perceptual characteristics (e.g., size, shape,
color) (Warrington and McCarthy 1983; Warrington and Shallice
1984; Farah and McClelland 1991). When making fine-grained
distinctions among animals (e.g., elk vs. rhino), participants
may rely on physical appearance information (e.g., size, shape,
color), which is believed to be represented in ventral occipito-
temporal cortices, rather than the IP/PC entity-responsive
regions studied here (Thompson-Schill et al. 1999; Oliver and
Thompson-Schill 2003; Connolly et al. 2012, 2016). Consistent
with the possibility that appearance-related information is
used to distinguish among animals, some studies also suggest
larger differences between blind and sighted individuals’ repre-
sentations for living as opposed to nonliving categories (Bi et al.
2016).

In future work it will be important to unconfound dimen-
sions such as animacy from perceptual characteristics, such as
size, to determine whether the IP/PC entity-responsive areas
represent one or both types of information.

Distributed Representation of Verbs and Nouns Within
the Lexical–Semantic Network

While we find that verb- and noun-responsive regions have a
bias toward representing lexicosemantic information related to
their preferred word class, decoding was also successful for the
nonpreferred categories in every cortical area tested. Analogous
sensitivity to the nonpreferred stimulus class has been observed
in the visual object recognition literature. Images of objects from
different classes (i.e., places, faces, and bodies) can be distin-
guished from each other based on patterns of activity outside the
traditional areas that preferentially respond to those categories
(Haxby et al. 2001; Spiridon and Kanwisher 2002; Kanwisher and
Yovel 2006). What does this sensitivity to the nonpreferred lexical
class reflect?

One possibility is that noun-related information is automat-
ically retrieved during verb processing and vice versa. For
example, retrieving a verb like “lick” may partially activate
likely agents (e.g., dog) and objects (e.g., bone). Analogously,
names of artifacts such as “the garage” could prime actions
that typically occur in garages (e.g., parking) (Leshinskaya and
Caramazza 2015). As noted above, the LMTG+ region does
respond to some nouns, specifically ones that refer to events
(Collina et al. 2001; Tabossi et al. 2010; Garbin et al. 2012; Bedny
et al. 2014; Lapinskaya et al. 2016). Some studies have also sug-
gested common neural responses to verbs and tools in the lat-
eral temporal cortex, although others find that verbs and tools
recruit neighboring but nonoverlapping regions (Bedny and
Caramazza 2011; Vannuscorps and Pillon 2011; Perini et al.
2014; Pillon and d’Honincthun 2011). Verb- and noun-
responsive areas could be involved in representing a type of
lexicosemantic information that is particularly relevant for one
grammatical class but is also relevant, to some degree, for the
nonpreferred class. For example, the LMTG+ might respond to
action verbs and also to some degree to names of tools because
of both categories’ action-related semantic information (Hauk
et al. 2008; Desai et al. 2009; Fernandino et al. 2015).

A further open question is whether and how activity in non-
preferred cortical areas is functionally relevant to behavior. As
noted in the introduction, neuropsychological evidence shows
that verbs and nouns can dissociate in the context of brain
damage (Goodglass et al. 1966; Luria and Tsvetkova 1967). This
observation suggests that some neural populations are more
behaviorally relevant for one grammatical class over another.
Supporting evidence for this hypothesis also comes from stud-
ies with transcranial magnetic stimulation (TMS) (Papeo et al.
2014). Disruption of activity in the verb-responsive posterior
LMTG+ region with TMS interferes with participants’ perfor-
mance on a synonym-judgment task with verbs, but not nouns
(Papeo et al. 2014). This observation suggests that despite being
sensitive to lexicosemantic distinctions among verbs and
among nouns, verb-responsive LMTG+ is more behaviorally rel-
evant for verb comprehension.

Conclusions
We observed a double dissociation in the neural representation
of verbs’ and nouns’ lexicosemantic information. An LMTG+
region that responds more to verbs than nouns is more sensi-
tive to lexicosemantic distinctions among verbs than among
nouns. By contrast, several parietal and inferior temporal areas
(LPC, LIP, and LIT) are more active during noun processing and
more sensitive to lexicosemantic distinctions among nouns.
However, all cortical areas tested were sensitive to the
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lexicosemantic distinctions of their preferred grammatical class
as well as, to a lesser extent, their nonpreferred one. These
results suggest that verb and noun lexicosemantic properties
are represented in partially nonoverlapping neural networks.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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