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Conventional analyses of functional magnetic resonance imaging (fMRI) data compare the brain's response to
stimulus categories (e.g., pictures of faces, stories about beliefs) across participants. In order to infer that
effects observed with the specific items (a particular set of pictures or stories) are generalizable to the entire
population (all faces, or all stories about beliefs), it is necessary to perform an “item analysis.” Item analyses
may also reveal relationships between secondary (non-hypothesized) features of the items and functional
activity. Here, we perform an item analysis on a set of stories commonly used for localizing brain regions
putatively involved in Theory of Mind (ToM): right and left temporo-parietal junction (RTPJ/LTPJ), precuneus
(PC), superior temporal sulcus (STS) and medial prefrontal cortex (MPFC). We address the following
questions: Do brain regions that comprise the ToM network respond reliably across items (i.e. different stories
about beliefs)? Do these brain regions demonstrate reliable preferences for itemswithin the category? Canwe
predict any region's response to individual items, by using other features of the stimuli? We find that the ToM
network responds reliably to stories about beliefs, generalizing across items as well as subjects. In addition,
several regions in the ToM network have reliable preferences for individual items. Linguistic features of the
stimuli did not predict these item preferences.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Consider the following scenario: a researcher wishes to investigate
brain regions recruited for Theory of Mind (ToM), i.e. the ability to
attribute and reason about the mental states of other individuals.
To that end, she creates two sets of stories, one set describing beliefs
held by different protagonists and a set of control stories not in-
cluding beliefs. Using a standard analysis strategy, each brain region's
response to belief versus control stories is evaluated for significance,
by comparing the average effect size (beliefNcontrol) to the
variability of the effect across subjects. The researcher concludes
that the resulting brain network is recruited more for processing/
representing the category of stories about mental states than the
category of control stories. This conclusion, however, goes beyond
what was explicitly tested. From a standard analysis, she can only
conclude that a contrast between these exact stimuli will on average
reveal the same brain regions in a different group of subjects. She
cannot conclude that these brain regions will reliably be recruited for
other (or all) stories about beliefs.

This example illustrates the “fixed-effects fallacy” (Clark, 1973) or
the unfounded inference that conclusions about items sampled from a
population generalize to the entire item population. Up until the late

1990s, neuroimagers fell victim to this same problem with subject-
wise analyses by treating subjects as “fixed” variables. In treating
subjects as a “fixed” variable, the variability of an effect across subjects
is not taken into account, which is especially problematic if there is
substantial variability in the effect size across participants. Consider
an instance in which only one out of five subjects shows a very large
effect for some condition, and the other subjects show no effect.
Averaging the effect across subjects, the entire group will appear to
exhibit a medium-sized effect. Therefore, in modern neuroimaging
analyses, random-effects analysis is used, which compares an effect to
its variability across subjects. This strategy allows researchers to test
whether their findings will generalize to the population from which
the subjects are sampled (Friston et al., 1999; Holmes and Friston,
1998). In the example above, treating subjects as a random variable
would reveal that the apparent medium-sized average effect is not
reliable across subjects.

This same issue exists at the item level. Perhaps only one or two of
the stories about beliefs recruit a brain region very strongly (due to
some theoretically irrelevant feature), while the remaining stories
have no effect. Averaging across items, the group of belief stories
will appear to recruit this brain region to a moderate degree. In order
to make (theoretically more important) generalizations about the
category to which an item belongs, one needs to evaluate the effect
size relative to the variation of the effect across items, in an item-wise
random-effects analysis. Only upon doing so can one validly conclude
that the given brain network is reliably recruited for the item category.
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Item analysis has yet to become common practice for neuroima-
gers despite the fact that it has the potential to reveal theoretically
relevant distinctions and is known to be feasible. For example, Bedny
et al. (2007) tested the hypothesis that distinct brain regions in the
frontal and temporal cortex process nouns and verbs (grammatical-
class effect). Using subject-wise analysis, they found a differential
brain response to verbs versus nouns in the left posterior temporal
lobe and left inferior frontal lobe. Conversely, item analysis revealed
that only the effect in the temporal lobe was reliable across items,
whereas the effect in the frontal lobe was not. This finding suggests
that the grammatical-class effect in the frontal region was specific
to the nouns and verbs used in the experiment; the effect would
not necessarily generalize to other items from the same categories.
Therefore, it would be erroneous to conclude that a region within the
frontal lobewas specialized for processing verbs versus nouns, despite
the significant subject-wise effect. In that case, the item analysis
reconciled conflicting findings regarding the role of the prefrontal
cortex in processing specific aspects of language (Bedny and
Thompson-Schill, 2006; Davis et al., 2004; Shapiro et al., 2006; Tyler
et al., 2001, 2004).

The first goal of the current study was therefore to apply item-wise
random effects analyses to an experimental paradigm frequently
used to identify brain regions involved in ToM. Following in the
tradition of developmental investigations of ToM (Wimmer and
Perner, 1983), neuroimaging studies have often used “false belief”
stories to test belief reasoning. In these stories, a protagonist performs
an action based on a belief that is false (e.g., Maxi believes his
chocolate is in the green drawer, but his mother moved it to the blue
drawer). Participants reading these stories are thus required to
represent the outdated belief of the protagonist in order to under-
stand their actions (e.g., looking in the green drawer even though the
chocolate is actually in the blue drawer). These stories are contrasted
with “false photograph” stories, which also require the representation
of false or outdated content (e.g., an old photograph that no longer
accurately depicts the landscape of a burgeoning city). False belief
and false photograph stories are therefore matched in their general
difficulty, logical complexity, and inhibitory demands, but differ in the
need to think about someone's thoughts. Accordingly, a set of stories
about false beliefs and false photographs (Saxe and Kanwisher, 2003)
is commonly employed across a range of studies to identify brain
regions in the so-called “ToM network”: right and left temporo-
parietal junction (RTPJ/LTPJ), superior temporal sulcus (STS), pre-
cuneus (PC) and medial prefrontal cortex (MPFC) (Kliemann et al.,
2008; Mitchell, 2008; Saxe and Powell, 2006; Saxe et al., 2006; Saxe
and Wexler, 2005; Scholz et al., 2009; Young et al., 2007, 2010a). It
is therefore theoretically important to establish that these regions'
recruitment generalizes beyond the specific commonly used stimuli.
Here, we used an item analysis to formally test whether the brain
response to these specific stories about false beliefs can be generalized
to the category of such stories.

Item analyses also have a second advantage. An item analysis
produces an estimate of the response in each brain region, to each
specific stimulus. If a region has a reliable preference for specific items
within a category, this preference may provide a clue about the
region's function. Every item in an fMRI experiment can be
characterized on multiple different dimensions or features (e.g., for
stories about beliefs, the number of people or mental states
mentioned, the degree of syntactic complexity, the specific context
of the story, etc.). It may be possible to determine which item
dimensions or features best predict each region's response. These
dimensions or features may be confounds, which explain away
previous categorical effects, or they may confirm and expand prior
results, by allowing a higher-resolution picture of the region's
processing, within stimulus categories. One specific concern is that
activity in the ToM network is best accounted for by linguistic features
of the stories that are concomitant with the presence of belief

information. The extent to which these factors account for activity
in ToM brain regions can be evaluated within a single paradigm by
analyzing data at the item level.

In the current paper, we used item analyses to investigate the ToM
network.We ask the following questions: (1) Does item-wise analysis
replicate subject-wise analysis? That is, does the response in ToM
brain regions generalize across items within each stimulus category
(false beliefs and false photographs)? (2) Do ToM brain regions
demonstrate a reliable preference for items within each category?
And, (3) what features of the items account for activity/stable pref-
erence for items in these regions? We characterized the stimuli
used by Saxe and colleagues (e.g., Saxe and Powell, 2006; Saxe and
Wexler, 2005; Young et al., 2007, 2010b) on several dimensions
(words per story, number of people per story, Flesch reading ease
level, visualizability and several other linguistic aspects), and asked
whether any of these features could predict differences between
items in the response of ToM brain regions.

Methods

Participants

Sixty-two right-handed naïve adults (M age=22±4 years,
range=18–35, 35 females) participated in the experiment for pay-
ment. All participants were native English speakers, had normal
or corrected-to-normal vision, and gave written informed consent in
accordancewith the requirements of the internal review board atMIT.
For a portion of the analyses, the participants were split into two
independent groups. The two groups did not differ in age or gender
(Group 1: n=32, M age=22±3, 17 females; Group 2: n=30, M
age=23±5, 18 females; Age: t(60)=1.18 p=.25; Gender: χ2(1)=
.298 p=.59).

Stimuli

Stimuli consisted of 20 stories in each of two conditions: (1) stories
describing false beliefs (BELIEF) and (2) stories describing outdated
(i.e. false) photographs and maps (PHOTO; Table 1; Saxe and
Kanwisher, 2003, Experiment 2. See Supplementary Table 1 for a
complete list of BELIEF and PHOTO items along with the
corresponding beta values from the RTPJ, LTPJ, PC, RpSTS, RTP,
DMPFC and MMPFC). Both sets of stories required participants to
represent false content; the critical difference was in the type of
false content represented (i.e., a belief versus a photograph/map).
Stories were followed by a true/false question that referred either to
the situation in reality or to the false representation. There were an
equal number of questions that referred to the reality and represen-
tation in each condition, the order of which was counterbalanced
within and across runs. Participants responded to the question with a
button response. Reaction time (RT) data were collected during the
scan.

In the scanner, stories were presented visually for 10 s, followed by
the true/false question for 4 s and finally 12 s of rest (a black screen).
Stories were presented in a pseudo-random order with the order of
conditions counterbalanced across runs and participants. Eight stories
were presented in each of 4 runs (4 stories per condition per run) for a
total run time of 14 min and 24 s. The text of each story was presented
in 30-point white font on a black background via Matlab 7.6 running
on an Apple MacBook Pro.

fMRI data acquisition and analysis

Participants were scanned at 3 T (at the MIT scanning facility in
Cambridge, MA) with a 12-channel head coil using thirty 4-mm-thick
near axial slices covering thewhole brain. Standard echoplanar imaging
procedures were used (TR=2 s, TE=30 ms, flip angle=90°). The first
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4 volumes of each run consisted of dummy scans, which were not
analyzed, to insure steady-state magnetization. These sequences used
PACE online motion correction, which adjusts the slice acquisitions
during scanning to correct for head movement up to 8 mm.

FMRI data were analyzed using SPM2 (http://www.fil.ion.ucl.ac.uk/
spm)andcustomsoftware. Eachparticipant's dataweremotioncorrected
and normalized onto a common brain space (Montreal Neurological
Institute,MNI template). Datawere smoothed using aGaussianfilter (full
width half maximum=5mm) and were high-pass filtered during
analysis. The experiment used a block design and was modeled using a
boxcar regressor convolvedwith a standard hemodynamic response.We
performed both subject- and item-wise, whole-brain and ROI analyses
following the general procedure of Bedny et al. (2007).

For the subject-wise analysis, individual subject first-level models
were created using a general linear model with conditions (BELIEF,
PHOTO) as covariates of interest. Second-level random effects analysis
was performed on the contrast images generated from the first-level
models for BELIEFNPHOTO. Here, the variance between the effect
sizes for BELIEFNPHOTO across subjects was used to calculate a t
statistic at each voxel, treating subjects as a random variable. The
whole-brain BELIEFNPHOTO contrast was FDR corrected for multiple
comparisons at pb .01.

In the item-wise analysis, individual subject first-level models
were creased using a general linear model with each of the 40 items
entered as a covariate of interest. This yielded 40 beta maps per
subject, which were averaged across subjects to obtain a single beta
map per item. Second-level random effects analysis used these values
to compute condition differences (BELIEFNPHOTO) via a two-sample
t-test at every voxel, treating the items as a random variable. The
whole-brain BELIEFNPHOTO contrast was FDR corrected for multiple
comparisons at pb .01.

For ROI analysis, participants were divided into two independent
groups (Group 1 n=32, Group 2 n=30). Regions identified from the
subject-wise random effects analysis of Group 1 were used to extract
data from Group 2 participants. Each of the 7 ROIs – RTPJ, LTPJ, PC,
right posterior superior temporal sulcus (RpSTS), right temporal pole
(RTP), dorsal medial prefrontal cortex (DMPFC), and middle medial
prefrontal cortex (MMPFC) – was defined as a sphere of contiguous
voxels 9 mm from the peak that were significantly more active
(pb .0001, uncorrected, kN10) for the BELIEFNPHOTO contrast in
Group 1. To investigate whether item analysis replicated the findings
of previous subject-wise analysis, t-tests were conducted on the
average beta values for all BELIEF versus all PHOTO stories in Group 2,
in each ROI. All peak voxels are reported in MNI coordinates.

Testing the reliability of the ROI item response: item-wise correlation
analysis

To investigate whether a larger response to particular items was
consistent across groups of participants, we performed an item-wise

correlation analysis. In this procedure, ROIs (RTPJ, LTPJ, PC, RpSTS,
RTP, DMPFC, MMPFC) were defined from the 62 subject subject-wise
random effects analysis of BELIEFNPHOTO (as a sphere of contiguous
voxels 9 mm from the peak at pb .0001, uncorrected, kN10), and used
to extract beta values for each story for each individual. Then, the 62
participants were randomly split into two groups 100 times, and for
each iteration, the average beta per itemwas calculated in each group.
These beta values were correlated across groups within each ROI,
separately by condition, creating 100 Pearson r values, which allow
us to estimate the mean and variance of the reliability of item
preferences within condition, across participants. Note that for this
procedure, we are measuring the item response correlation between
the two groupswithin each condition. Given that the ROIs are defined
based on between condition differences (i.e., BELIEFNPHOTO), the
measured correlation is independent of the ROI selection procedure.

Item coding and regression analyses

Beta values from Group 2's data (extracted from ROIs defined in
Group 1) only were used for all subsequent analyses. To address the
question of which features of the item accounted for activity in the
ROIs, stories were coded for several linguistic, social and general
conceptual as well as perceptual features. Thirteen linguistic features
were coded: number of words per story, Flesch reading ease, anaphor
reference, causal content, causal cohesion, lexical concreteness,
negation, noun-phrase modification, higher-level constituency, num-
ber of words before the main verb, intentional content, attitude
predication and modality; four social features: number of people per
story and the extent to which the items made readers think about
the mental states, deception, and social status; and two general
conceptual and perceptual features: the extent to which the items
made readers think about physical causality and imagine/visualize
the events of the story while reading. Altogether, 19 item features
(detailed below) were coded.

First, a group of features of each story was estimated by collecting
independent participants' ratings of the stories on five dimensions
evaluating the extent to which our items made readers think about
(i) mental states, (ii) deception, (iii) social status, (iv) physical
causality and (v) the extent to which the story made participants
image/visualize events. These data were collected via an online study
using Amazon's Mechanical Turk (M-Turk). Participants were
instructed to answer one of the following questions using a Likert
scale from 1 (very little) to 7 (very much): (i) “To what extent did this
story make you think about someone's experiences, thoughts, beliefs,
desires, and/or emotions?”, (ii) “To what extent did this story make
you think about someone being deceived or fooled by someone or
something?”, (iii) “To what extent did this story make you think
about someone's appearance, social status, or role in society?”, (iv)
“To what extent did this story make you think about physical objects,
and physical causal interactions?”, and (v) “To what extent did you

Table 1
BELIEF and PHOTO items which elicited the highest and lowest response from the right temporo-parietal junction (RTPJ).

Item RTPJ beta value

BELIEF highest The morning of high school dance Sarah placed her high heel shoes under her dress and then went shopping.
That afternoon, her sister borrowed the shoes and later put them under Sarah's bed.

.446

Sarah gets ready assuming her shoes are under the dress.
BELIEF lowest When Jeff got ready this morning, he put on a light pink shirt instead of a white one. Jeff is colorblind,

so he can't tell the difference between subtle shades of color.
−.059

In reality, Jeff's shirt is pink.
PHOTO highest The traffic camera snapped an image of the black car as it sped through the stoplight. Soon after,

the car was painted red and the license plates were changed.
.241

According to the traffic camera, the car is black.
PHOTO lowest Old maps of the islands near Titan are displayed in the Maritime museum. Erosion has since taken its toll,

leaving only the three largest islands.
−.470

Near Titan today there are many islands.

Each item was followed by a statement (italicized text) which subjects evaluated as “True” or “False” with a button press response.
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picture or imagine the events of the story happening as you read?”
These five questions were individually paired with each of the 40
stories, for 160 separate single-question surveys. Participants were
allowed to do as many surveys as they wanted, for a total of 20
participants per survey question (except question (v), which was
answered by 50 participants).

The number of words in each story, and the number of people
mentioned in each story, were counted by the experimenters.

To characterize the other linguistic features of the items, we
used the Coh-Metrix, a metric designed to measure computational
cohesion and text difficulty, based on measures of syntactic, seman-
tics, and representational difficulty (Graesser et al., 2004; McNamara
et al., 2002, 2006). The Coh-Metrix includes 54 linguistic features. We
chose twelve specific features to analyze in this experiment, using two
criteria. First, the feature must be variable across the stimulus items.
For example, we excluded any feature that was absent from all of
the items. Second, we prioritized features that are hypothesized to
modulate activity in the ToM network (e.g., amount of intentional
information, number of verbs expressing belief or desire information
that use sentential complement clause syntax, general text compre-
hensibility/difficulty). Below we describe each of the final eleven
measures in detail.

One of the features, Flesch reading ease, measures comprehension
difficulty by calculating average sentence length and the number of
syllables per word. Higher Flesch reading ease scores indicates easier
text and increased readability.

Four of the features measure aspects of semantic cohesion:
anaphor reference, causal content, causal cohesion, and lexical con-
creteness. Increased semantic cohesion has been shown to correlate
with increased ease of processing, mental modeling, and overall
comprehension. Anaphor reference measures the number of times a
single idea, item, or action is referred to throughout the text, indexed
by the number of anaphors in each story (such as pronouns it, he, she,
and ellipsis markers, did,was) that refer to a constituent that appeared
previously in the story. Causal content is a measure of the extent to
which a story conveys causal information, which is correlated with
coherence, comprehensibility and ease of mental modeling (Graesser
et al., 1997). This index is estimated by counting the number of main
verbs in the text that are categorized as causal in WordNet (Fellbaum,
1998;Miller et al., 1990). Causal information alone does not guarantee
comprehensibility — a reader must also be able to coherently connect
causal events and actors. Thus, we also measured causal cohesion, the
ratio of causal particles to causal verbs, for each story. Causal particles
include because, due to, if, thus, unless. A low causal cohesion score
correlates with lack of general textual cohesion and increased dif-
ficulty of comprehension. Finally, lexical concreteness is a measure of
the overall concreteness of the words in the story. Concreteness was
computed by finding the mean concreteness of the content words
(primarily nouns and verbs) in the stimuli, based on human rating
data from the MRC Psycholinguistics Database (Coltheart, 1981).

Four of the features measure aspects of syntactic complexity:
negation, noun phrase modification, higher-level constituency, and
words before the main verb. Increased syntactic complexity is cor-
related with increased working memory load, slower processing,
and difficulty in comprehension. Negation is one index of syntactic
complexity, measured by counting the negative expressions in the
text, such as no, not, un-, without. Noun phrase modification, measures
the mean number of modifiers, such as adjectives, adverbs, and
determiners, per noun phrase, indexing the difference between most
of the very fluffy and drooling puppies (sevenmodifiers) and the puppies
(one modifier). A more general feature, higher-level constituency,
counts the number of complex units per sentence (such as phrases
and clauses) controlling for word count. Sentences with a high
number of high-level constituents are often structurally dense, with
unusual syntax or embedding, and are generally harder to process.
Fourth, sentences with a high number of words before the main verb

have been shown to be taxing on working memory, making this an
additional index of the working memory load for a story.

Finally, three linguistic features were specifically chosen to be
relevant for ToM: intentional content, attitude predication, and
modality. First, Intentional content, like causal content, is a measure
of coherence within the text. However, rather than looking at causal
relationships, this index measures the incidence of intentional actions
and events based on the number of intentional main verbs,
categorized based on WordNet ratings. The higher the incidence of
intentional actions in a text, the more likely the text is to convey goal-
driven content. If ToM regions are sensitive to goal-driven action or
desire, they might show sensitivity to variation along this dimension.
Second, Attitude Predication measures the number of verbs (pre-
dicates) that express thoughts and desires, such as believe, want, and
think, per 100words. Acquisition of these verbs has been implicated in
development of ToM, both because they allow the expression of
mental states and because of their syntax (e.g. opacity: a sentence
containing an attitude predicate can be false without affecting the
truth of the full sentence, as in John thinks that there are unicorns is his
yard; de Villiers and Pyers, 2002). Third, Modality measures the
number of operators that deal with possibility and necessity, such as
the words possibly, should, might, and must, per 100 words. This class
of words has a very similar set of properties as attitude predicates,
including opacity and sentential embedding. However, this class
crucially does not deal with mental states or desires, and thus serve as
a useful comparison for effects of attitude predication.

(For a correlation matrix of pair-wise correlations among all of
these features, see Supplementary Table 3).

We performed stepwise forward/backward regression analyses
with ROI item response. In stepwise regression, at each step, one
predictor is added to the regression, whichmost improves themodel's
fit to the data (the forward step). The overall model fit is penalized for
each additional predictor, to avoid over-fitting. Predictors are then
excluded if their contribution to predicting the outcome becomes
non-significant after other predictors are included in the model (the
backward step). The process is iterated until adding an additional
predictor would not significantly improve the model fit. Each ROI's
response to the items was the outcome (dependent) variable and the
item features and condition were the predictor (independent)
variables. Given the large number of predictors (20) entered into
the regression, we used a fairly stringent entry and removal criteria
(entry=.01, removal=.05; see Supplementary Table 2 for regression
results performed with entry p=.05 and removal p=.10).

Results

Subject- and item-wise whole brain random effects analysis

We first askedwhether brain regions that reliably respond to belief
information across subjects also respond reliably across items. To that
end, we performed whole brain subject- and item-wise analysis on
the same data set. Fig. 1 depicts the brain regions significantly more
active (FDR corrected, pb .01, kN10) for the BELIEF versus PHOTO
stories across subjects, and across items, in the whole brain (see
Table 2 for list of brain regions). All of the brain regions thought to
comprise the ToM network (RTPJ, LTPJ, PC, DMPFC, MMPFC, RSTS, left
superior temporal sulcus [LSTS], RTP) were reliably active in both
subject- and item-wise analysis indicating that the ToM network also
has a reliable response across items.

Brain regions active for subject-wise analysis and not item-wise
analysis were the left temporal pole (LTP), right posterior middle
frontal gyrus, calcarine sulcus, middle cingulate gyrus, left inferior
frontal gyrus and orbito-frontal cortex, indicating that these regions
are not reliably activated across false-belief items. That is, these brain
regions (not considered part of the classic ToM network) may appear
in the subject-wise analyses due to features of a small number of
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items; they would not necessarily be activated for other sets of false-
belief stories.

ROI analysis of the item-wise data

Whole brain item-wise random effects analysis demonstrated that
the ToM network is reliably recruited across items. We sought
converging evidence for this finding with ROI analyses. To that end,
ROIs indentified in the BELIEF versus PHOTO contrast in the subject-
wise analysis (RTPJ, LTPJ, PC, RpSTS, RTP, DMPFC, MMPFC; Fig. 2) for
Group 1 were used to extract beta values for each item from Group
2's data. Average beta values for the BELIEF and PHOTO items were
compared with t-tests (Fig. 2). In all of the ROIs, activity was sig-
nificantly greater for the BELIEF versus PHOTO stories (RTPJ: t(38)=
6.13 pb .001; LTPJ: t(38)=4.89 pb .001; PC: t(38)=5.99 pb .001;
RpSTS: t(38)=5.19pb .001;RTP: t(38)=3.02p=.005;DMPFC: t(38)=
2.09 p=.043; MMPFC: t(38)=2.39 p=.022) providing converging
evidence for the whole brain analyses, and replicating the results of

previous subject-wise analyses of BELIEF versus PHOTO stories (e.g.,
Saxe and Kanwisher, 2003).

Reliability of ROI response to items within conditions: item-wise
correlation analysis

The previous analyses indicate that ToM brain regions generalize
across subjects and items. A separate question is whether any of
these brain regions – RTPJ, LTPJ, PC, RpSTS, RTP, DMPFC, MMPFC –
demonstrate a systematically higher response to individual stories
within conditions. If so, this would suggest that the region is
responding to specific features of the item. To address this question,
we performed an item-wise correlation analysis, correlating ROI
response to the items across groups created by randomly splitting the
62 subjects into two groups 100 times. Mean Pearson r values across
the 100 iterations along with 95% confidence intervals (CI) of the
mean r value are reported in Table 3 (data from Group 1 and Group 2
are depicted in Fig. 2). The range of mean correlation values was .25
(MMPFC) to .82 (PC). Reliability estimates of these correlations (95%
CI of the mean) ranged from ±.10 (PC) to ±.35 (MMPFC).

The within-condition, cross-group correlations demonstrate that
most of the ROIs in the ToM network have reliable preferences for
itemswithin each condition. An interesting question is whether all the
regions in the ToM network have the same item preferences, or
whether different brain regions prefer different items. To address
this question, we correlated item beta values from Group 2 across
ROIs (defined from Group 1), separately for BELIEF and PHOTO items
(Table 4). The regions mostly showed uncorrelated preferences
among the BELIEF items; the only two significant correlations were
between the RTPJ and each of the PC and RTP (PC and RTP response
were not correlated with each other). For the PHOTO items, by
contrast, many of the regions shared similar preferences: item-wise
preferences for PHOTO items were correlated among the RTPJ, LTPJ,
PC, RpSTS, and RTP, and between the DMPFC andMMPFC, for example
(see Table 4 for the complete list).

In sum, most of the ToM regions had reliable preferences for
specific items within the BELIEF and PHOTO conditions, and these
preferences were not identical across regions, especially for stories
about false beliefs. These results raise the important question of which
features that vary between the individual items predict the item-
specific responses in each of these regions.

Using item features to predict ROI item response

To test the predictive power of many features simultaneously, we
performed stepwise forward/backward regressions. In the RTPJ and
LTPJ, condition (RTPJ: standardized β=.695, t(39)=5.97, pb .001;
LTPJ: β=.592, t(39)=4.53, pb .001) emerged as the only significant
predictor of activity. The resulting model accounted for 47.0% (RTPJ)
and 33.3% (LTPJ) of the variance in the response across items
(adjusted for the number of predictors). In the PC, RpSTS and RTP,

Fig. 1. Whole brain subject- and item-wise random effects analysis of BELIEFNPHOTO. Whole brain subject-wise (blue activations; N=62 participants) and item-wise (red
activations; N=40 items; 20 BELIEF and 20 PHOTO items) random effects analysis of BELIEFNPHOTO (FDR corrected, pb .01) revealed overlap (magenta activations) in commonly
observed ToM brain regions: RTPJ, LTPJ, PC, RSTS, LSTS, RTP, and MPFC. Activations are displayed on a canonical brain image.

Table 2
Whole brain subject- and item-wise random effects results for BELIEFNPHOTO.

x y z Peak voxel
t-value

Subject-wise
Precuneus −2 −54 38 14.43
Right temporo-parietal junction 52 −52 22 11.10
Right anterior superior temporal sulcus 58 −20 −14 9.53
Left temporo-parietal junction −50 −58 20 9.36
Left anterior superior temporal sulcus −60 −24 −8 7.57
Right temporal pole 50 6 −34 7.54
Middle medial prefrontal cortex 2 60 18 6.43
Right posterior superior frontal gyrus 10 34 62 5.85
Dorsal medial prefrontal cortex 0 56 26 5.70
Left temporal pole −52 4 −28 5.27
Left superior frontal gyrus −20 60 30 5.26
Right posterior middle frontal gyrus 46 8 48 4.83
Calcarine sulcus 2 −92 0 4.81
Middle cingulate gyrus 2 −22 42 4.74
Right inferior frontal gyrus 52 30 −6 4.63
Orbito-frontal cortex 2 48 −18 4.59

Item-wise
Right posterior superior temporal sulcus 62 −32 0 7.55
Right temporo-parietal junction 56 −48 24 7.38
Right anterior superior temporal sulcus 58 −22 −10 7.22
Left temporo-parietal junction −50 −50 24 7.14
Precuneus 8 −58 40 6.79
Middle medial prefrontal cortex 0 60 18 6.07
Left superior frontal gyrus −18 60 28 5.93
Right posterior superior frontal gyrus 12 34 62 5.48
Dormal medial prefrontal cortex 2 58 30 5.07
Left anterior superior temporal sulcus 62 −24 −10 4.75
Right temporal pole 52 2 −36 4.53

Peak voxels for ROIs in Montreal Neurological Institute [MNI] coordinates (FDR
corrected, pb .01, kN10).
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condition was not a reliable predictor, once other features were
included in the model. In the PC, only number of people (β=.729,
t(39)=6.57, pb .001) was included in the model, accounting for
51.9% of the variance. In the RpSTS, only the extent to which M-Turk
participants reported that they considered the thoughts, beliefs and
desires of someone in the story (β=.680, t(39)=5.71, pb .001)
reliably predicted BOLD signal, accounting for 44.8% of the variance.
In the RTP, only number of words per story (β=.525, t(39)=3.80,
pb .001) reliably predicted BOLD signal, accounting for 25.6% of
the variance. In the DMPFC and MMPFC, none of the factors reliably
predicted BOLD signal. The other linguistic features were not in-
cluded in the final model of the response in any of the ToM regions.

Discussion

Inferences about the cognitive function of brain regions based on
fMRI data can be significantly strengthened by item analyses, to show
that effects of specific items generalize to the entire item category.
However, item analyses remain rare, and have not previously been

used in social cognitive neuroscience. Our first objective was to
determine whether activity in the ToM network generalizes from a
commonly used set of false beliefs stories to the category of such
stories about false beliefs. All of the brain regions thought to comprise
the ToM network (i.e. RTPJ, LTPJ, PC, DMPFC, MMPFC, RSTS, LSTS and

Fig. 2. Item-wise ROI analyses and item by group response correlations within each ROI. Whole brain subject-wise random effects analysis of Group 1 (n=32) which was used to
extract item beta values for Group 2 (n=30) for BELIEFNPHOTO (pb .0001, uncorrected, kN10). Seven ROIs were defined from this analysis (RTPJ, LTPJ, PC, RpSTS, RTP, DMPFC and
MMPFC [not visible here]). Activations are displayed on a canonical brain image. Corresponding ROI plots of beta values extracted from Group 2 using the ROIs defined in Group 1.
Error bars represent standard error of the mean. To the right of the bar graphs are scatterplots of the beta values from Group 1 and Group 2 for each item (see item-wise correlation
analysis results and Table 3 for mean correlation values and 95% confidence intervals). Purple data points depict BELIEF items; white data points depict PHOTO items.

Table 3
Item-wise correlation analysis: mean correlation (r-value) and 95% confidence interval
of the mean.

RTPJ LTPJ PC RpSTS RTP DMPFC MMPFC

Belief .81±.12 .68±.19 .82±.10 .56±.21 .66±.18 .45±.26 .32±.31
Photo .78±.12 .77±.16 .68±.22 .45±.32 .62±.21 .58±.26 .25±.35

Table 4
Item beta value correlations (r-value) across ROIs separately for BELIEF and PHOTO.

BELIEF RTPJ LTPJ PC RpSTS RTP DMPFC MMPFC

RTPJ .48a .79⁎ .44 .65⁎ −.31 .50a

LTPJ .12 .18 .33 .18 .06
PC .27 .33 −.51a .42
RpSTS .50a .37 .30
RTP .00 .55
DMPFC .00

PHOTO RTPJ LTPJ PC RpSTS RTP DMPFC MMPFC

RTPJ .84⁎ .78⁎ .66⁎ .67⁎ .48a .27
LTPJ .63⁎ .76⁎ .49a .57a .16
PC .54a .69⁎ .59⁎ .15
RpSTS .52a .58a .31
RTP .55a .20
DMPFC .62⁎

RTPJ = right temporo-parietal junction, LTPJ = left temporo-parietal junction, PC =
precuneus, RpSTS = right posterior superior temporal sulcus, RTP = right temporal
pole, DMPFC = dorsal medial prefrontal cortex, MMPFC = middle medial prefrontal
cortex.
⁎ Bonferonni corrected pb .008.
a These values were significant at an uncorrected level of pb .05.
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RTP, e.g., Aichhorn et al., 2009; Mitchell, 2008; Saxe and Kanwisher,
2003; Saxe and Powell, 2006; Saxe and Wexler, 2005) showed
significantly higher responses to BELIEF than PHOTO stories, in item-
wise whole brain random effects and in ROI analyses. These results
provide formal evidence that ToM network activity in response to
these stimuli is not due to idiosyncratic features of a small number of
these stimuli, but instead generalizes to the category of such stories
about false beliefs. By contrast, several brain regions were revealed
only in the subject-, but not item-wise analysis: left temporal pole
(LTP), right posterior middle frontal gyrus, calcarine sulcus, middle
cingulate gyrus, left inferior frontal gyrus and orbito-frontal cortex.
The absence of these regions in the item analysis suggests that they
would not reliably be activated by other ToM stimuli, and indeed,
these regions are not reliably observed across other experiments
testing ToM.

Inferences from these data must be qualified, however. The power
of item analyses is limited by the sample of stimuli, and themethod by
which they were generated. Item analysis supports generalization to a
whole population specifically when experimental items were ran-
domly sampled from that population. This limit is analogous to limits
on generalizing the results of standard subject-wise analyses: in
general, those results should be generalized only to the population
from which the subjects were sampled, usually college-aged, highly
educated, middle-class/wealthy individuals (as in the current exper-
iment; see Henrich et al., 2010). Given the nature of the items of
interest here (verbal narratives), it is hard to quantify the population
fromwhich they constitute a random sample. Also, the current stories
are not a representative sample of all stories about people's thoughts,
because these stories did not contain many descriptions of other
mental states like true beliefs, desires, or emotions. Stronger conclu-
sions could be reached in future studies, using item analyses with a
larger and more variable set of stimuli, and a better characterized
method for generating a ‘random sample’ of such stimuli (e.g. by
selecting random passages from published short stories).

The true scope of the response in regions of the ToM network is
suggested by the wide range of prior studies that have reported
activity in these regions, using verbal (e.g., Aichhorn et al., 2009;
Fletcher et al., 1995; Gallagher et al., 2000; Saxe and Kanwisher, 2003)
and non-verbal stimuli (e.g., Castelli et al., 2000; Gallagher et al., 2000;
German et al., 2004; Walter et al., 2010), stimuli depicting true beliefs
(Saxe et al., 2009; Saxe and Powell, 2006; Young et al., 2010a) and
false beliefs (Fletcher et al., 1995; Gallagher et al., 2000; Saxe and
Kanwisher, 2003; Vogeley et al., 2001), stimuli in English and non-
English languages (Kobayashi et al., 2007), stimuli describing beliefs
and preferences (Jenkins and Mitchell, 2010), and stimuli describing
affective as opposed to purely epistemic states (Vollm et al., 2006;
Walter et al., 2010). Taken together with the current findings, the
response of the ToM network does indeed appear to generalize not
just to stories about false beliefs, but to the entire category of mental
states (or stimuli that lead to mentalizing).

The second purpose of the item analysis was to produce an
estimate of the response in each brain region, to each specific
stimulus. If a region has a reliable preference for specific items within
a category, this preference may provide a clue about the region's
function. We found that the RTPJ, LTPJ, PC, RpSTS, RTP and DMPFC had
reliable preferences for specific items within conditions, across
participants. Furthermore, item preferences were not highly corre-
lated across brain regions, especially for BELIEF stories. Thus, these
item preferences could reveal the distinct functions of individual
regions within the ToM network.

We therefore attempted to predict the item-specific responses of
each region, using twenty different features of the items. The features
we coded included belief-related aspects of the story (the extent to
which the story made participants consider somebody's thoughts or
desires, or to which someone was being deceived), social features
(number of people per story and the extent to which someone's social

status, role or appearance was considered), causal content (including
the extent to which the story made participants consider physical
causal interactions) and text difficultly/comprehensibility (e.g. num-
ber of words, and various measures of syntactic complexity). The
linguistic features were of particular interest, since previous authors
have suggested that ToM depends distinctively on syntactic repre-
sentations of embedded sentence complements (e.g. “Hank thinks
that his saxophone is in the closet”; de Villiers and Pyers, 2002), and
that linguistic features might account for the activity in ToM brain
regions (Ferstl and von Cramon, 2002; Ferstl et al., 2008).

We found that simple models, including only one or two factors,
best accounted for the cross-item variability in each region's response.
The best model of the RTPJ and LTPJ, in particular, included only the
single factor of condition (BELIEF versus PHOTO stories), which
accounted for almost half of the overall variance in the RTPJ and a
third of the variance in the LTPJ. In the PC, the best predictor was the
number of people in the story: there was greater activity in the PC for
stories that mentioned more people. In the RpSTS the best predictor
was the independent ratings of another group of participants, of how
much each itemmade them consider the “thoughts, beliefs, desires or
emotions” of the protagonist.

These differences between regions are intriguing, but should be
interpreted with caution: in the current relatively small set of stimuli,
the number of people in the story and theseM-Turk ratings, were both
highly correlated with condition. When two predictors are highly
correlated, a step-wise regression assigns all of the associated
variance in the output variable to one of the two predictor variables:
whichever one initially accounts for the most variance. Thus, small
differences in the predictive power of two correlated input variables
can lead to different-looking models. Future research using regres-
sions over item analyses should use larger sets of stimuli, in which the
predictor variables can be better disentangled.

Perhaps the most intriguing result of the regression analyses was
the factors that were not able to predict the ToM regions' preferences
for items. Linguistic features of the stimuli, and other features we
coded, like visualizibility, textual difficulty, and causal content,
apparently do not explain away the neural response in any of the
ToM regions. It remains an open challenge to account for the within-
condition preferences in these regions; we welcome suggestions (the
Supplementary Materials includes Supplementary Table 1, showing
the response of each brain region to each item).

One practical implication of these results is that it should allow for
easier identification of ToM brain regions in new subjects by using the
BELIEF stories that produce the greatest activation in the ToM
network, and the PHOTO stories which produce the least amount
of activation in the ToM network. We confirmed this prediction and
report, in the SupplementaryMaterials (see “ToM Superlocalizer”) the
results of two naïve subjects tested with an extremely more efficient
version of the false belief task: just 5 stories from each condition. This
new version produced reliable activation in the ToM network in just
5 min of scanning. Thus, item analyses afford the additional advantage
of providing data that can inform the design of more efficient scanner
paradigms.

Conclusion

In summary, item analysis provides two important features be-
yond those of conventional fMRI analyses: They allow the general-
ization of effects from items employed in a specific experiment to
entire categories of items and can provide insight into themore subtle
relationships between functional activity and cognitive processes that
would normally be obscured by analysis at the category level. In
consideration of these ideas, we employed item analysis on a false
belief task for ToM brain regions. Our findings demonstrate that
(1) activity in the ToM network generalizes to the category of false-
belief stories, and (2) some regions within the network have a reliable
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preference for specific items within conditions. However, the item-
specific responses on these regions were not predicted by plausible
confounding factors like the visual vividness or linguistic complexity
of the items. Thus, item analyses may reveal a previously unknown
division of labor in the ToM network for processing specific stories
about beliefs. These hypotheses, suggested by exploratory item
analyses, must be confirmed by direct experimental manipulation,
and eventually, to get beyond the correlational analyses of fMRI, using
tools like transcranial magnetic stimulation, that allow researchers to
test a brain region's causal role (Young et al., 2010b).
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