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ScienceDirect
Studies with Deaf and blind individuals demonstrate that

linguistic and sensory experiences during sensitive periods

have potent effects on neurocognitive basis of language. Native

users of sign and spoken languages recruit similar fronto-

temporal systems during language processing. By contrast,

delays in sign language access impact proficiency and the

neural basis of language. Analogously, early but not late-onset

blindness modifies the neural basis of language. People born

blind recruit ‘visual’ areas during language processing, show

reduced left-lateralization of language and enhanced

performance on some language tasks. Sensitive period

plasticity in and outside fronto-temporal language systems

shapes the neural basis of language.

Addresses
1University of California San Diego, United States
2University of Washington, United States
3 Federal University of Rio de Janeiro, Brazil
4 Johns Hopkins University, United States

Corresponding author: Bedny, Marina (Marina.bedny@jhu.edu)

Current Opinion in Behavioral Sciences 2020, 36:169–176

This review comes from a themed issue on Sensitive and critical
periods

Edited by Willem Frankenhuis and Catherine Hartley

https://doi.org/10.1016/j.cobeha.2020.10.011

2352-1546/ã 2020 Elsevier Ltd. All rights reserved.

Introduction
Unlike learning calculus, political science or learning to

cook, language acquisition proceeds more quickly and

effectively in childhood. Lenneberg was one of the first

proponents of the idea that language acquisition follows a

critical period, akin to those found in sensory systems [1].

Critical or sensitive periods are windows during the life-

span where neural systems exhibit enhanced plasticity,

resulting in enhanced learning capacities as well as

enhanced vulnerability to negative environmental influ-

ence. Perhaps the best studied sensitive period is that of

visual cortex in amblyopia. Monocular deprivation during,

but not before or after, the sensitive period causes the

‘good eye’ to take over cells that would normally respond

to input from the deprived eye [2,3]. In recent decades,
www.sciencedirect.com 
there has been tremendous progress in uncovering the

neurochemical mechanisms that mediate the opening and

closing of sensitive periods in sensory systems. For exam-

ple, maturation of inhibitory gamma-aminobutyric acid

(GABA) circuits, itself partially experience-dependent, is

a key step in sensitive period opening and molecular

breaks, such as perineuronal nets mediate sensitive

period closure [4].

At present it is not possible to measure cellular properties

of language related cortical circuits in humans. Whether

putative sensitive periods for language acquisition are

mediated by similar neural mechanisms to those found

in sensory systems is not known. Nevertheless, studies of

behavior and cortical function in humans strongly suggest

that the juvenile brain is optimally suited to language

acquisition. Evidence for the sensitive period hypothesis

in language comes from a variety of sources, including

second language acquisition, language training with chil-

dren and adults and acquisition of language by children

with early brain damage [5–7]. The current review centers

on recent evidence from studies with individuals who are

born either deaf or blind, focusing specifically on higher-

order aspects of language, including grammar and seman-

tics [see Refs. 8,9 for reviews of sensitive periods in

speech perception]. Studies of sensory loss provide

unique insights into how experience shapes the neuro-

cognitive development of a first language. Comparing the

effects of early life experience to those of experience in

adulthood (early versus late access to a sign language and

early versus late blindness) reveals the unique malleabil-

ity of the neural basis of language early in life.

Language acquisition is resilient to sensory loss per
se. Children born blind acquire language effectively

despite reduced access to the referents of sentences such

as ‘Look at the red cup’ [10]. Children born deaf acquire

language in similar ways to hearing children, provided

they have access to a manual sign language early in life

[11]. In hearing speakers and deaf native signers, lan-

guage likewise depends on a left-lateralized fronto-tem-

poral network. (For an example of fronto-temporal

response during spoken sentence comprehension see

Figure 1). However, delays in exposure to sign language

among people born deaf affect ultimate language profi-

ciency, modify cortical responses to language and affect

cortical anatomy. Consistent with the idea that the neural

basis of language is more malleable during sensitive

periods, early but not late blindness incorporates parts

of occipital ‘visual’ cortices into language networks and
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Figure 1
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Language processing networks of congenitally blind (n = 22), adult-onset blind (n = 15) and sighted adults (n = 18). Activation for sentences as

compared to lists of non-words, cluster corrected, p < 0.05. Adapted from Ref. [56��].
reduces left-lateralization of language. Evidence from

blindness and deafness converges on the idea that the

neural basis of language is maximally flexible and maxi-

mally vulnerable during sensitive periods of develop-

ment. At the same time, the different patterns of plastic-

ity observed in these populations raise new questions. In

Deaf individuals, delayed language access is associated

with a modified neural basis of language and lower

linguistic proficiency. By contrast, blindness-related

changes to the neural basis of language have either no

behavioral consequences (reduced left-lateralization) or

are associated with performance enhancements (addition

of occipital areas to fronto-temporal networks). This evi-

dence highlights the complexity of brain-behavior

relationships.

Language-related plasticity in Deafness as a result of

delayed sign language access

Spoken language is the most prevalent form of human

communication and being born deaf affects access to

speech. Even with the aid of hearing devices and speech

training, deaf children have variable and often limited

access to spoken language. About 5–10% of Deaf individ-

uals are born into households with fluent users of a sign

language and exposed to a fully accessible, visual-manual,

language from birth [12]. Deaf native learners acquire

sign language in the same way as hearing children acquire
Current Opinion in Behavioral Sciences 2020, 36:169–176 
a spoken language and become proficient users of pho-

nology, morphology, grammar and semantics in the par-

ticular sign language they are exposed to [see Ref. 11 for

review]. In Deaf native signers, sign languages depend on

similar fronto-temporal neural mechanisms as spoken

languages [13,14]. Evidence from native signers illus-

trates the modality-independent nature of fronto-tempo-

ral systems. Just as the intrinsic developmental plasticity

of fronto-temporal systems accommodates English, Hindi

and Urdu acquisition, it also enables the acquisition of

Brazilian, American or Chinese sign languages.

In contrast to native learners, the majority of Deaf indi-

viduals are born to hearing non-signing parents. For these

children, access to a fully accessible language, sign lan-

guage, is often limited and variable early in life. The

current review focuses on the consequences of these

delays for linguistic behavior and the neural basis of

language. Studies of delayed language access among

people born deaf are a strong test of the sensitive period

hypothesis, since Deaf individuals experience delayed

access to a first language (L1), despite typical social and

physical experience.

Most Deaf individuals will eventually acquire sign lan-

guage when entering a sign language education program,

or when encountering the Deaf community. A large body
www.sciencedirect.com
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of work shows that delaying access to sign language limits

ultimate language proficiency [16–18 see Ref. 19� for a

review]. Recent behavioral case studies with Deaf indi-

viduals who have no hearing compensation and severely

delayed access to L1 highlight the importance of lan-

guage exposure during early development. When indi-

viduals with severely delayed access finally get exposed

to a sign language community, in adolescence or adult-

hood, early vocabulary and basic word order is acquired

[20,21]. However, later emerging aspects of grammar,

such as topicalization and grammatical markers, plateau

before reaching full native proficiency [20, Mayberry

et al., unpublished]. Even when presented with simple

transitive sentences, severely delayed language learners

privilege real world knowledge over syntactically relevant

word order, interpreting sentences such as ‘the egg bites a

boy’ as the boy biting an egg [Cheng and Mayberry,

unpublished]. In one case report, an individual who

acquired British Sign Language (BSL) in his late 20 s

and was tested 25 years after exposure, attained gram-

matical skills comparable to a 5-year-old Deaf native

signer, and showed inconsistent phonological and gram-

matical use in spontaneous production [22].

Severe delays in language access are also associated with

changes to the neural basis of language. As noted above,

Deaf native signers recruit left fronto-temporal language

network during comprehension and production [15]. A

series of studies recently examined the neural basis of

language processing in three individuals with severely

delayed access to sign language, no hearing compensation

and no formal schooling. Two of these individuals were

first exposed to a signing community in late adolescence

and one at 20 years of age. The adolescent learners were

first scanned 2–3 years after initial exposure to a signing

community, while the adult learner had been signing for

20 years at the time of the study. Relative to native

signers, all three individuals show reduced activation in

typical fronto-temporal language networks during word

comprehension [23,24,25��]. By contrast, increased activ-

ity is observed in occipital regions, possibly reflecting

increased reliance on visuo-spatial processing, and in right

frontal and parietal regions [23,25��], possibly reflecting

increased reliance on domain general working memory

systems. After an additional year of ASL exposure, the

two adolescent learners showed some shift from right

fronto-parietal and occipital to left fronto-temporal

regions, especially when processing familiar words [24].

All three severely delayed learners show reduced con-

nectivity in the left arcuate fasciculus, a white matter

pathway that connects temporal and frontal language

regions [26].

Since severe language delays are fortunately rare, the

sample sizes of the studies reviewed above are necessarily

small. Convergent evidence comes from studies with

larger samples of Deaf individuals with late sign language
www.sciencedirect.com 
onset but shorter delays or somewhat less impoverished

early language experience (e.g. used hearing technology

such as hearing aids or cochlear implants). These studies

find similar behavioral and neural changes to cases of

severe delay, but the effects are more moderate and more

variable, possibly reflecting variable access to spoken

language before sign language acquisition. Delaying sign

language access reduces ultimate proficiency in grammar

[27,28], phonology [29–31] and vocabulary for the sign

language being acquired [32,33]. Moreover, earlier sign

language access facilitates spoken and written language

attainment [34,35], again showing the crucial role of a

fully accessible language during the sensitive periods.

Late access to sign language also reduces activation in left

fronto-temporal language regions during phonological

and sentence processing tasks and increases occipito-

parietal involvement [36,37��,38 for evidence of anatom-

ical occipital changes see Ref. 39]. In summary, studies of

sign language acquisition in Deaf individuals provide

clear evidence that delayed exposure to a first language

impacts phonological and grammatical proficiency and

changes the neural networks that support language

processing.

Language-related plasticity in blindness

Unlike deafness, vision loss does not substantially alter

access to speech. Blindness changes access to the refer-

ents of linguistic expression, that is to the objects, events

and qualities to which languages refer. This observation

led to the hypothesis that blindness would significantly

delay or fundamentally changes the acquisition of mean-

ings of linguistic expressions. Empirical evidence shows,

on the contrary, that blind children acquire language in

largely the same way as sighted children and converge on

similar meanings [10,40]. This is true even for seemingly

‘visual’ words, such sparkle, peek and blue [41–43]. Rather

than being hindered, linguistic communication enables

people born blind to construct mental models of visual

phenomena and appearance that are similar to those of

sighted people living in the same culture [44�]. As

reviewed below, aspects of language processing are in

fact enhanced in blindness, either because of increased

reliance on language as a source of information, because

of availability of extra cortical resources or both [45�].

Blindness from birth also modifies the neural basis of

language by changing neural dynamics during cortical

development. In addition to classic fronto-temporal lan-

guage networks, people who are born blind recruit ‘visual’

cortices during language tasks [46, see Ref. 47 for recent

review]. This functional reorganization is part of a broader

phenomenon known as ‘cross-modal’ plasticity, whereby

deafferented visual cortices upregulate their responses to

other modalities and cognitive domains [48]. In blind

adults, but not blindfolded sighted controls, ‘visual’ cor-

tices are active when listening to sentences and words,

when generating verbs to heard nouns and when reading
Current Opinion in Behavioral Sciences 2020, 36:169–176
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Braille via touch (Figure 1) [49–52]. Apart from language,

‘visual’ cortices of blind individuals are active during

tasks such as sound localization, mathematical calculation

and auditory motion perception [48]. Language recruits a

distinctive subset of ‘visual’ cortices, relative to these

non-linguistic tasks [52]. Responses to spoken language

are observed in secondary visual regions of lateral and

ventral occipito-temporal cortex, including the so called

‘visual word form area,’ as well as in primary visual cortex

(V1) (Figure 1, top row) [53]. A recent study reported that

different parts of ‘visual’ cortex respond to sentence

comprehension, verb generation, long term memory

and executive demands [54]. Occipital regions that are

active during language tasks also change in their func-

tional connectivity, becoming coupled with fronto-tem-

poral language networks at rest [51,55].

Crucially, in blindness, language-responsive ‘visual’ areas

are sensitive to high-level linguistic information that is,
Figure 2
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semantics and grammar. For example, ‘visual’ regions

respond more to sentences than lists of words and more

to Jabberwocky than lists of non-words [57]. In blindness,

‘visual’ cortices are also sensitive to grammatical com-

plexity of spoken sentences, responding more to sen-

tences with syntactic movement (Figure 2) [46,58].

There is some evidence that occipital responses to lan-

guage are behaviorally relevant. Transcranial Magnetic

Stimulation (TMS) applied to ‘visual’ cortices of blind

individuals impairs verb generation and Braille reading

[59–61]. In one study, blind individuals with larger

responses to grammatical complexity in ‘visual’ cortex

were more accurate when answering comprehension

questions about grammatically complex sentences [58].

One recent study found that, people born blind are on

average better at comprehending complex grammatical

constructions, particularly garden path sentences than

sighted controls [45�]. There is also evidence for faster
V1
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lexical access and superior verbal memory in blindness

[62,63]. Whether these cognitive enhancements are

related to occipital recruitment, habitual processing of

spoken language in the absence of visual cues, increased

reliance on language or all of the above remains to be

determined.

Apart from occipital plasticity, the lateralization of fronto-

temporal language networks is more variable across con-

genitally blind than sighted people. In one study just

under half of the blind participants sampled showed

bilateral or right-lateralized fronto-temporal responses

during spoken language comprehension [64�]. Interest-

ingly, across blind individuals, fronto-temporal and occip-

ital responses to language are co-lateralized: blind indi-

viduals who show right-lateralized responses to language

in inferior frontal cortex, also show right-lateralized

responses to language in occipital cortex. However, there

is no relationship between the degree of occipital recruit-

ment and language lateralization across individuals, sug-

gesting that changes in laterality and occipital plasticity

are driven by different mechanisms. The mechanisms of

blindness-related laterality changes are not known. One

possibility is that blindness alters competitive processes

between language and other cognitive domains (e.g.

visuo-spatial processes) that typically ‘push’ language

to the left hemisphere during cortical development.

Both reduced lateralization of fronto-temporal networks

and addition of ‘visual’ cortex regions to the language

system follow sensitive periods. People who become

blind as adults show responses to language that are as

left-lateralized as those of sighted people, even after

many years of blindness (Figure 1) [58]. Occipital

responses to language are less pronounced in people

who become blind as adults and upregulation of resting

state correlation between occipital and fronto-temporal

language regions is present but reduced [56��,57,65,66,
see Ref. 67 for review of sensitive period effects in cross-

modal plasticity]. Occipital sensitivity to grammatical

structure appears to be absent in people who become

blind in adulthood [56��,67]. There is also evidence that

behavioral relevance of occipital responses is unique to

people born blind [68]. Together, these studies suggest

that blindness early in life is uniquely capable of modify-

ing the neural basis of language.

Conclusions
Evidence from studies with Deaf and blind individuals

provides complementary support for the sensitive period

hypothesis of language acquisition and gives insight into

human cortical specialization. Delays in access to sign

language among people born deaf reduce ultimate lan-

guage proficiency and modify the neural basis of language

[13,15]. In cases of severe delay in language access,

fronto-temporal involvement during language tasks

appears to be reduced. Attainment of native proficiency
www.sciencedirect.com 
may, therefore, depend on the enhanced plasticity of

fronto-temporal networks during sensitive periods. The

evidence also raises a potential link between the recruit-

ment of left fronto-temporal networks for language and

proficiency in some language domains, such as grammar.

On the other hand, studies with people born blind show

that fronto-temporal regions are not the only ones that can

participate in language processing and that not all changes

to the neural bases of language have negative behavioral

consequences. Adults born blind perform the same or

better than sighted people on language tasks but show

reduced left-lateralization of language and recruit occipi-

tal, in addition to fronto-temporal areas, during language

processing. Moreover, even in ‘visual’ occipital cortices,

specialization for language occurs only during sensitive

periods. Cortical specialization for language may, there-

fore, depend on sensitive period plasticity in and outside

fronto-temporal systems.

Evidence from blindness also suggests that competitive

interactions between cognitive domains play an impor-

tant role in human cortical specialization [69,70]. As noted

in the introduction, in primary visual cortex the two eyes

compete for cortical neurons during sensitive periods [2].

Analogous competition appears to occur at the network

scale, with language encroaching into occipital cortices in

the absence of competing visual inputs during develop-

ment. An open question is whether non-linguistic cogni-

tive domains analogously colonize fronto-temporal net-

works in the absence of timely language access. By

contrast, exposure to any language, whether spoken or

signed, may establish language specialization in fronto-

temporal systems and prevent colonization by other cog-

nitive functions. According to this hypothesis, human

cortex does not wait around for a specific type of infor-

mation to arrive but rather becomes specialized, as best it

can, for whatever information is available during sensitive

periods. Future work could test this hypothesis by study-

ing whether fronto-temporal language regions acquire

responses to non-linguistic domains in Deaf individuals

with delayed language access.
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